Skip to main content
Log in

The Efficiency of Gene Activation Using CRISPR/dCas9-Based Transactivation Systems Depends on the System Run Time

  • MAMMALIAN GENOME EDITING
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Transactivation systems are a promising application based on the CRISPR/Cas9 system and allow targeted control of gene expression levels in cell culture. However, their performance has been reported to vary considerably depending on the cell type and the activator system. Three activator systems (dCas9-VP160, dCas9-SunTag, and dCas9-VPR) were compared for the efficiency of activating expression of OCT4, NANOG, PDX1, FOXA2, NKX2-2, and NKX6-1 in an immortalized human skin fibroblast line. The activation efficiency was found to depend on the activation system type; the extent of activation depended on the system run time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Zhang H., Qin C., An C., Zheng X., Wen S., Chen W., Liu X., Lv Z., Yang P., Xu W., Gao W., Wu Y. 2021. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol. Cancer. 20 (1), 126. https://doi.org/10.1186/s12943-021-01431-6

    Article  CAS  Google Scholar 

  2. Shakirova K.M., Ovchinnikova V.Y., Dashinimaev E.B. 2020. Cell reprogramming with CRISPR/Cas9 based transcriptional regulation systems. Front. Bioeng. Biotechnol. 8, 882. https://doi.org/10.3389/fbioe.2020.00882

    Article  Google Scholar 

  3. Yegorov E.E., Terekhov S.M., Vishniakova Kh.S., Karachentsev D.N., Kazimirchuk E.V., Tsvetkova T.G., Veiko N.N., Smirnova T.D., Makarenkov A.S., El’darov M.A., Meshcheryakova Yu.A., Lyapunova N.A., Zelenin A.V. 2003. Telomerization as a method of obtaining immortal human cells preserving normal properties. Russ. J. Dev. Biol. 34 (3), 145–153.

    Article  CAS  Google Scholar 

  4. Cheng A.W., Wang H., Yang H., Shi L., Katz Y., Theunissen T.W., Rangarajan S., Shivalila C.S., Dadon D.B., Jaenisch R. 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23 (10), 1163‒1171. https://doi.org/10.1038/cr.2013.122

  5. Liu Y., Yu C., Daley T.P., Wang F., Cao W.S., Bhate S., Lin X., Still C. 2nd, Liu H., Zhao D., Wang H., Xie X.S., Ding S., Wong W.H., Wernig M., Qi L.S. 2018. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell. 23 (5), 758‒771. e8. https://doi.org/10.1016/j.stem.2018.09.003

  6. Ho S.M., Hartley B.J., Flaherty E., Rajarajan P., Abdelaal R., Obiorah I., Barretto N., Muhammad H., Phatnani H.P., Akbarian S., Brennand K.J. 2017. Evaluating synthetic activation and repression of neuropsychiatric-related genes in hiPSC-Derived NPCs, neurons, and astrocytes. Stem Cell Rep. 9 (2), 615‒628. https://doi.org/10.1016/j.stemcr.2017.06.012

    Article  CAS  Google Scholar 

  7. Weltner J., Balboa D., Katayama S., Bespalov M., Krjutškov K., Jouhilahti E.M., Trokovic R., Kere J., Otonkoski T. 2018. Human pluripotent reprogramming with CRISPR activators. Nat. Commun. 9 (1), 2643. https://doi.org/10.1038/s41467-018-05067-x

    Article  CAS  Google Scholar 

  8. Heckl D., Kowalczyk M.S., Yudovich D., Belizaire R., Puram R.V., McConkey M.E., Thielke A., Aster J.C., Regev A., Ebert B.L. 2014. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat. Biotechnol. 32 (9), 941‒946. https://doi.org/10.1038/nbt.2951

    Article  CAS  Google Scholar 

  9. Tanenbaum M.E., Gilbert L.A., Qi L.S., Weissman J.S., Vale R.D. 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 159 (3), 635‒646. https://doi.org/10.1016/j.cell.2014.09.039

    Article  CAS  Google Scholar 

  10. Moses C., Nugent F., Waryah C.B., Garcia-Bloj B., Harvey A.R., Blancafort P. 2019. Activating PTEN tumor suppressor expression with the CRISPR/dCas9 system. Mol. Ther. Nucleic Acids. 14, 287‒300. https://doi.org/10.1016/j.omtn.2018.12.003

    Article  CAS  Google Scholar 

  11. Xi H., Young C.S., Pyle A.D. 2020. Generation of PAX7 reporter cells to investigate skeletal myogenesis from human pluripotent stem cells. STAR Protoc. 1 (3), 100158. https://doi.org/10.1016/j.xpro.2020.100158

    Article  Google Scholar 

  12. Chavez A., Scheiman J., Vora S., Pruitt B.W., Tuttle M., Iyer P.R. E., Lin S., Kiani S., Guzman C.D., Wiegand D.J., Ter-Ovanesyan D., Braff J.L., Davidsohn N., Housden B.E., Perrimon N., Weiss R., Aach J., Collins J.J., Church G.M. 2015. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods. 12 (4), 326‒328. https://doi.org/10.1038/nmeth.3312

    Article  CAS  Google Scholar 

  13. Liu P., Chen M., Liu Y., Qi L.S., Ding S. 2018. CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell. 22 (2), 252‒261. e4. https://doi.org/10.1016/j.stem.2017.12.001

  14. Koay T.W., Osterhof C., Orlando I.M.C., Keppner A., Andre D., Yousefian S., Suárez Alonso M., Correia M., Markworth R., Schödel J., Hankeln T., Hoogewijs D. 2021. Androglobin gene expression patterns and FOXJ1-dependent regulation indicate its functional association with ciliogenesis. J. Biol. Chem. 296, 100291. https://doi.org/10.1016/j.jbc.2021.100291

    Article  CAS  Google Scholar 

  15. Hu W., Wang X., Ma S., Peng Z., Cao Y., Xia Q. 2021. CRISPR-mediated endogenous activation of fibroin heavy chain gene triggers cellular stress responses in Bombyx mori embryonic cells. Insects. 12 (6), 552. https://doi.org/10.3390/insects12060552

    Article  Google Scholar 

  16. Friedman J.R., Kaestner K.H. 2006. The Foxa family of transcription factors in development and metabolism. Cell Mol. Life Sci. 63 (19-20), 2317‒2328. https://doi.org/10.1007/s00018-006-6095-6

    Article  CAS  Google Scholar 

  17. Iwafuchi-Doi M., Donahue G., Kakumanu A., Watts J.A., Mahony S., Pugh B.F., Lee D., Kaestner K.H., Zaret K.S. 2016. The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol. Cell. 62 (1), 79‒91. https://doi.org/10.1016/j.molcel.2016.03.001

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education (project no. 075-15-2019-1789, Center of Precise Genome Editing and Genetic Technologies for Biomedicine). Studies by immunofluorescence microscopy were supported by the Russian Science Foundation (project no. 17-75-20178). A.S. Artyuhov acknowledges a Systems Biology Fellowship grant from the Skolkovo Institute of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Dashinimaev.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artyuhov, A.S., Dorovskiy, D.A., Sorokina, A.V. et al. The Efficiency of Gene Activation Using CRISPR/dCas9-Based Transactivation Systems Depends on the System Run Time. Mol Biol 56, 942–949 (2022). https://doi.org/10.1134/S0026893322060048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322060048

Keywords:

Navigation