Skip to main content

Multiplexed Transactivation of Mammalian Cells Using dFnCas12a-VPR

  • Protocol
  • First Online:
Mammalian Synthetic Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2774))

  • 260 Accesses

Abstract

CRISPR activation provides an invaluable tool for experimental biologists to convert correlations into causation by directly observing phenotypic changes upon targeted changes in gene expression. With few exceptions, most diseases are caused by complex polygenic interactions, with multiple genes contributing to define the output of a gene network. As such researchers are increasingly interested in tools that can offer not only control but also the capacity to simultaneously upregulate multiple genes. The adaptation of CRISPR/Cas12a has provided a system especially suited to the tightly coordinated overexpression of multiple targeted genes. Here we describe an approach to test for active targeting crRNAs for dFnCas12a-VPR, before proceeding to generate and validate longer crRNA arrays for multiplexed targeting of genes of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed Central  Google Scholar 

  2. Gilbert LA, Larson MH, Morsut L et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451

    Article  CAS  PubMed Central  Google Scholar 

  3. Chakraborty S, Ji H, Kabadi AM et al (2014) A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep 3:940–947

    Article  CAS  Google Scholar 

  4. Nakamura M, Srinivasan P, Chavez M et al (2019) Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat Commun 10:194

    Article  PubMed Central  Google Scholar 

  5. Krawczyk K, Scheller L, Kim H et al (2020) Rewiring of endogenous signaling pathways to genomic targets for therapeutic cell reprogramming. Nat Commun 11:608

    Article  CAS  PubMed Central  Google Scholar 

  6. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed Central  Google Scholar 

  7. Campa CC, Weisbach NR, Santinha AJ et al (2019) Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat Methods 16:887–893

    Article  CAS  Google Scholar 

  8. Bryson JW, Auxillos JY, Rosser SJ (2021) Multiplexed activation in mammalian cells using a split-intein CRISPR/Cas12a based synthetic transcription factor. Nucleic Acids Res 50:549–560

    Article  PubMed Central  Google Scholar 

  9. Tu M, Lin L, Cheng Y et al (2017) A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Nucleic Acids Res 45:11295–11304

    Article  CAS  PubMed Central  Google Scholar 

  10. Tak YE, Kleinstiver BP, Nuñez JK et al (2017) Inducible and multiplex gene regulation using CRISPR–Cpf1-based transcription factors. Nat Methods 14:1163–1166

    Article  CAS  PubMed Central  Google Scholar 

  11. Kim HK, Min S, Song M et al (2018) Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity. Nat Biotechnol 36:239–241

    Article  CAS  Google Scholar 

  12. Martin FJ, Amode MR, Aneja A et al (2022) Ensembl 2023. Nucleic Acids Res gkac958

    Google Scholar 

  13. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  CAS  PubMed Central  Google Scholar 

  14. Marshall R, Maxwell CS, Collins SP et al (2018) Rapid and scalable characterization of CRISPR technologies using an E. Coli cell-free transcription-translation. System 69:146

    CAS  Google Scholar 

  15. Reyes A, Huber W (2018) Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues. Nucleic Acids Res 46:582–592

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Rosser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bryson, J.W., Rosser, S.J. (2024). Multiplexed Transactivation of Mammalian Cells Using dFnCas12a-VPR. In: Ceroni, F., Polizzi, K. (eds) Mammalian Synthetic Systems. Methods in Molecular Biology, vol 2774. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3718-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3718-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3717-3

  • Online ISBN: 978-1-0716-3718-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics