Skip to main content
Log in

Genome-Wide Analysis of DNA Methylation in Cd4+ T Lymphocytes of Patients with Primary Progressive Multiple Sclerosis Indicates Involvement of This Epigenetic Process in the Disease Immunopathogenesis

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The pathogenesis of multiple sclerosis (MS), a chronic disease of the CNS, includes autoimmune and neurodegenerative components. In most cases, patients develop relapsing-remitting MS (RRMS), while 10–15% of patients develop primary progressive MS (PPMS), which differs from RRMS in the mechanisms of the pathological process, some demographic, and some clinical characteristics. These differences may be explained by the epigenetic regulation of gene expression in PPMS including DNA methylation as one of the key epigenetic processes. The features of DNA methylation in various cell populations in PPMS patients remain understudied. The goal of this study is to identify differentially methylated CpG sites (DMSs) of the genome of CD4+ T lymphocytes, which characterize PPMS. The study included eight treatment-naïve PPMS patients and eight healthy controls. Genome-wide analysis of DNA methylation of CD4+ T lymphocytes was performed using high-density DNA microarrays. We have identified 108 DMSs, which distinguish PPMS patients from healthy controls. In PPMS patients 81% of the DMSs are hypermethylated . More than a half of the identified DMSs are located in known genes in CpG islands and adjacent regions, which indicates a high functional significance of these DMSs in PPMS development. Analysis of the overrepresentation of DMS-containing genes in the main biological processes demonstrates their involvement in the regulation of cell adhesion to the extracellular matrix and the development of the immune response, i.e., antigen processing and presentation, and development of the immune system. Genome-wide analysis of DNA methylation in CD4+ T lymphocytes of PPMS patients indicates the involvement of this epigenetic process in the immunopathogenesis of the disease. These results may help better understand the pathogenesis of this severe form of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. International Multiple Sclerosis Genetics Consortium. 2019. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 365 (6460), eaav7188.

  2. Oksenberg J.R. 2013. Decoding multiple sclerosis: An update on genomics and future directions. Expert. Rev. Neurother. 13 (12 Suppl.), 11–19.

    Article  Google Scholar 

  3. Lublin F.D., Reingold S.C., Cohen J.A., Cutter G.R., Sørensen P.S., Thompson A.J., Wolinsky J.S., Balcer L.J., Banwell B., Barkhof F., Bebo B. Jr., Calabresi P.A., Clanet M., Comi G., Fox R.J., et al. 2014. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology. 83 (3), 278–286.

    Article  Google Scholar 

  4. Koch M., Kingwell E., Rieckmann P., Tremlett H. 2009. The natural history of primary progressive multiple sclerosis. Neurology. 73 (23), 1996–2002.

    Article  Google Scholar 

  5. Correale J., Gaitán M.I., Ysrraelit M.C., Fiol M.P. 2017. Progressive multiple sclerosis: From pathogenic mechanisms to treatment. Brain. 140 (3), 527–546.

    PubMed  Google Scholar 

  6. Debouverie M., Pittion-Vouyovitch S., Louis S., Guillemin F., LORSEP Group. 2008. Natural history of multiple sclerosis in a population-based cohort. Eur. J. Neurol. 15 (9), 916–921.

    Article  CAS  Google Scholar 

  7. Choy M.K., Movassagh M., Goh H.G., Bennett M.R., Down T.A., Foo R.S. 2010. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated. BMC Genomics. 11, 519.

    Article  Google Scholar 

  8. Kulakova O.G., Kabilov M.R., Danilova L.V., Po-pova E.V., Baturina O.A., Tsareva E.Yu., Baulina N.M., Kiselev I.S., Boiko A.N., Favorov A.V., Favorova O.O., Vlasov V.V. 2016. Genome-wide analysis of DNA methylation in blood mononuclear cells of patients with different forms of disseminated sclerosis. Acta Naturae. 8 (2), 39–47.

    Article  Google Scholar 

  9. Maltby V.E., Lea R.A., Sanders K.A., White N., Benton M.C., Scott R.J., Lechner-Scott J. 2017. Differential methylation at MHC in CD4+ T cells is associated with multiple sclerosis independently of HLA-DRB1. Clin. Epigenetics. 9, 71.

    Article  Google Scholar 

  10. Maltby V.E., Graves M.C., Lea R.A., Benton M.C., Sanders K.A., Tajouri L., Scott R.J., Lechner-Scott J. 2015. Genome-wide DNA methylation profiling of CD8+ T cells shows a distinct epigenetic signature to CD4+ T cells in multiple sclerosis patients. Clin. Epigenetics. 7, 118.

    Article  Google Scholar 

  11. Huynh J.L., Garg P., Thin T.H., Yoo S., Dutta R., Trapp B.D., Haroutunian V., Zhu J., Donovan M.J., Sharp A.J., Casaccia P. 2014. Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected brains. Nat. Neurosci. 17 (1), 121–130.

    Article  CAS  Google Scholar 

  12. Marabita F., Almgren M., Sjöholm L.K., Kular L., Liu Y., James T., Kiss N.B., Feinberg A.P., Olsson T., Kockum I., Alfredsson L., Ekström T.J., Jagodic M. 2017. Smoking induces DNA methylation changes in multiple sclerosis patients with exposure-response relationship. Sci. Rep. 7 (1), 14589.

    Article  Google Scholar 

  13. Macartney-Coxson D., Cameron A.M., Clapham J., Benton M.C. 2020. DNA methylation in blood-potential to provide new insights into cell biology. PLoS One. 15 (11), e0241367.

    Article  CAS  Google Scholar 

  14. Legroux L., Arbour N. 2015. Multiple sclerosis and T lymphocytes: An entangled story. J. Neuroimmune Pharmacol. 10 (4), 528–546.

    Article  Google Scholar 

  15. Milo R., Miller A. 2014. Revised diagnostic criteria of multiple sclerosis. Autoimmun. Rev. 13 (4–5), 518–524.

    Article  Google Scholar 

  16. Davis S., Du P., Bilke S., Triche, Jr. T., Bootwalla M. Methylumi: Handle Illumina methylation data. R package version 2.38.0. https://bioconductor.org/ packages/release/bioc/html/methylumi.html. Accessed September 20, 2021.

  17. Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43 (7), e47.

    Article  Google Scholar 

  18. Thomas P.D., Campbell M.J., Kejariwal A., Mi H., Karlak B., Daverman R., Diemer K., Muruganujan A., Narechania A. 2003. PANTHER: A library of protein families and subfamilies indexed by function. Genome Res. 13 (9), 2129–2141.

    Article  CAS  Google Scholar 

  19. Bos S.D., Page C.M., Andreassen B.K., Elboudwarej E., Gustavsen M.W., Briggs F., Quach H., Leikfoss I.S., Bjølgerud A., Berge T., Harbo H.F., Barcellos L.F. 2015. Genome-wide DNA methylation profiles indicate CD8+ T cell hypermethylation in multiple sclerosis. PLoS One. 10 (3), e0117403.

    Article  Google Scholar 

  20. Graves M.C., Benton M., Lea R.A., Boyle M., Tajouri L., Macartney-Coxson D., Scott R.J., Lechner-Scott J. 2014. Methylation differences at the HLA-DRB1 locus in CD4+ T-cells are associated with multiple sclerosis. Mult. Scler. 20 (8), 1033–1041.

    Article  CAS  Google Scholar 

  21. Hollenbach J.A., Oksenberg J.R. 2015. The immunogenetics of multiple sclerosis: A comprehensive review. J. Autoimmun. 64, 13–25.

    Article  CAS  Google Scholar 

  22. Kular L., Liu Y., Ruhrmann S., Zheleznyakova G., Marabita F., Gomez-Cabrero D., James T., Ewing E., Lindén M., Górnikiewicz B., Aeinehband S., Stridh P., Link J., Andlauer T.F.M., Gasperi C., Wiendl H., et al. 2018. DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nat. Commun. 9 (1), 2397.

    Article  Google Scholar 

  23. Handel A.E., De Luca G.C., Morahan J., Handunnetthi L., Sadovnick A.D., Ebers G.C., Ramagopalan S.V. 2010. No evidence for an effect of DNA methylation on multiple sclerosis severity at HLA-DRB1*15 or HLA-DRB5. J. Neuroimmunol. 223 (1–2), 120–123.

    Article  CAS  Google Scholar 

  24. Feldmesser E., Olender T., Khen M., Yanai I., Ophir R., Lancet D. 2006. Widespread ectopic expression of olfactory receptor genes. BMC Genomics. 7, 121.

    Article  Google Scholar 

  25. Garcia-Esparcia P., Schlüter A., Carmona M., Moreno J., Ansoleaga B., Torrejón-Escribano B., Gustincich S., Pujol A., Ferrer I. 2013. Functional genomics reveals dysregulation of cortical olfactory receptors in Parkinson disease: Novel putative chemoreceptors in the human brain. J. Neuropathol. Exp. Neurol. 72 (6), 524–539.

    Article  CAS  Google Scholar 

  26. Wong C.C., Meaburn E.L., Ronald A., Price T.S., Jeffries A.R., Schalkwyk L.C., Plomin R., Mill J. 2014. Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol. Psychiatry. 19 (4), 495–503.

    Article  CAS  Google Scholar 

  27. Woo J., Kwon S.K., Nam J., Choi S., Takahashi H., Krueger D., Park J., Lee Y., Bae J.Y., Lee D., Ko J., Kim H., Kim M.H., Bae Y.C., Chang S., et al. 2013. The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development. J. Cell. Biol. 201 (6), 929–944.

    Article  CAS  Google Scholar 

  28. Gil-Varea E., Urcelay E., Vilariño-Güell C., Costa C., Midaglia L., Matesanz F., Rodríguez-Antigüedad A., Oksenberg J., Espino-Paisan L., Dessa Sadovnick A., Saiz A., Villar L.M., García-Merino J.A., Ramió-Torrentà L., et al. 2018. Exome sequencing study in patients with multiple sclerosis reveals variants associated with disease course. J. Neuroinflammation. 15 (1), 265.

    Article  Google Scholar 

  29. Huang L.S., Mathew B., Li H., Zhao Y., Ma S.F., Noth I., Reddy S.P., Harijith A., Usatyuk P.V., Berdyshev E.V., Kaminski N., Zhou T., Zhang W., Zhang Y., Rehman J., et al. 2014. The mitochondrial cardiolipin remodeling enzyme lysocardiolipin acyltransferase is a novel target in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 189 (11), 1402–1415.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by State project no. 121040600400-8 for the Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Kiselev.

Ethics declarations

Conflict of interest. The authors state that there is no conflicts of interest.

Informed consent to participate in the experiment was obtained from all individuals included in the study. The study was approved by the Ethics Committee of the Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation.

Additional information

Translated by A. Levina

Abbreviations: DMS, differentially methylated CpG site; PBMC, peripheral blood mononuclear cells; RMS, relapsing-remitting multiple sclerosis; MS, multiple sclerosis; PPMS, primary progressive multiple sclerosis; EDSS, expanded disability status scale; GO, gene ontology database; SNP, Single nucleotide polymorphism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, I.S., Kulakova, O.G., Danilova, L.V. et al. Genome-Wide Analysis of DNA Methylation in Cd4+ T Lymphocytes of Patients with Primary Progressive Multiple Sclerosis Indicates Involvement of This Epigenetic Process in the Disease Immunopathogenesis. Mol Biol 56, 417–423 (2022). https://doi.org/10.1134/S0026893322030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322030074

Keywords:

Navigation