Skip to main content
Log in

SCP Phosphatases and Oncogenesis

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Small SCP phosphatases CTDSP1, CTDSP2, and CTDSPL specifically dephosphorylate serine and threonine residues in protein molecules. The enzymes are involved in regulating activity of RNA polymerase II at the transition from transcription initiation to elongation, regulating expression of neuron-specific genes, and activating the key cell-cycle protein pRb at the G1/S boundary. In addition, the substrates of SCP phosphatases include SMAD transcription modulators; AKT1 protein kinase, which regulates the cell cycle, apoptosis, and angiogenesis; the TWIST1 and c-MYC transcription factors; Rаs family proteins, which are involved in signaling pathways regulating the cell growth and apoptosis; CDCA3, which is associated with cell division; the cyclin-dependent kinase inhibitor p21; and the promyelocytic leukemia protein (PML), which is involved in regulation of the tumor suppressors p53, PTEN, and mTOR. Dysfunction or inactivation of SCP phosphatases leads to various diseases, including cancer. Recently the increase in interest to SCP phosphatases is due to their their tumor growth-inhibiting properties or role in the development of malignant tumors of various etiology and localization. The review discusses the properties of SCP phosphatases and their role in oncogenesis. Understanding the functions of SCP phosphatases and their regulatory mechanisms can be useful in searching for efficient targets for tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., Mann M. 2006. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 127, 635–648.

    Article  CAS  PubMed  Google Scholar 

  2. Shi Y. 2009. Serine/threonine phosphatases: Mechanism through structure. Cell. 139, 468–484.

    Article  CAS  PubMed  Google Scholar 

  3. Seifried A., Schultz J., Gohla A. 2013. Human HAD phosphatases: Structure, mechanism, and roles in health and disease. FEBS J. 280, 549–571.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y., Kim Y., Genoud N., Gao J., Kelly J.W., Pfaff S.L., Gill G.N., Dixon J.E., Noel J.P. 2006. Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Mol. Cell. 24, 759–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krasnov G.S., Puzanov G.A., Afanasyeva M.A., Dashinimaev E.B., Vishnyakova K.S., Beniaminov A.D., Adzhubei A.A., Kondratieva T.T., YYegorov Y.E., Senchenko V.N. 2019. Tumor suppressor properties of the small C-terminal domain phosphatases in non-small cell lung cancer. Biosci. Repts. 39 (12), BSR20193094. https://doi.org/10.1042/BSR20193094

    Article  CAS  Google Scholar 

  6. Yeo M., Lee S.K., Lee B., Ruiz E.C., Pfaff S.L., Gill G.N. 2005. Small CTD phosphatases function in silencing neuronal gene expression. Science. 307, 596–600.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang M., Yogesha S.D., Mayfield J.E., Gill G.N., Zhang Y. 2013. Viewing serine/threonine protein phosphatases through the eyes of drug designers. FEBS J. 280, 4739–4760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kamenski T., Heilmeier S., Meinhart A., Cramer P. 2004. Structure and mechanism of RNA polymerase II CTD phosphatases. Mol. Cell. 15, 399–407.

    Article  CAS  PubMed  Google Scholar 

  9. Almo S.C., Bonanno J.B., Sauder J.M., Emtage S., Dilorenzo T.P., Malashkevich V., Wasserman S.R., Swaminathan S., Eswaramoorthy S., Agarwal R., Kumaran D., Madegowda M., Ragumani S., Patskovsky Y., Alvarado J., et al. 2007. Structural genomics of protein phosphatases. J. Struct. Funct. Genomics. 8, 121–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rallabandi H.R., Ganesan P., Kim Y.J. 2020). Targeting the C-terminal domain small phosphatase 1. Life (Basel). 10 (5), 57. https://doi.org/10.3390/life10050057

    Article  CAS  PubMed Central  Google Scholar 

  11. Chambers R.S., Dahmus M.E. 1994. Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II. J. Biol. Chem. 269, 26243–26248.

    Article  CAS  PubMed  Google Scholar 

  12. Chesnut J.D., Stephens J.H., Dahmus M.E. 1992. The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit IIa. J. Biol. Chem. 267, 10500–10506.

    Article  CAS  PubMed  Google Scholar 

  13. Egloff S., Murphy S. 2008. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288.

    Article  CAS  PubMed  Google Scholar 

  14. Palancade B., Marshall N.F., Tremeau-Bravard A., Bensaude O., Dahmus M.E., Dubois M.F. 2004. Dephosphorylation of RNA polymerase II by CTD-phosphatase FCP1 is inhibited by phospho-CTD associating proteins. J. Mol. Biol. 335, 415–424.

    Article  CAS  PubMed  Google Scholar 

  15. Yeo M., Lin P.S., Dahmus M.E., Gill G.N. 2003. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J. Biol. Chem. 278, 26078–26085.

    Article  CAS  PubMed  Google Scholar 

  16. Jeronimo C., Bataille A.R., Robert F. 2013. The writers, readers, and functions of the RNA polymerase II C-terminal domain code. Chem. Rev. 113, 8491–8522.

    Article  CAS  PubMed  Google Scholar 

  17. Mayfield J.E., Burkholder N.T., Zhang Y.J. 2016. Dephosphorylating eukaryotic RNA polymerase II. Biochim. Biophys. Acta. 1864, 372–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Archambault J., Chambers R.S., Kobor M.S., Ho Y., Cartier M., Bolotin D., Andrews B., Kane C.M., Greenblatt J. 1997. An essential component of a C-terminal domain phosphatase that interacts with transcription factor IIF in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 94, 14300–14305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho E.J., Kobor M.S., Kim M., Greenblatt J., Buratowski S. 2001. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C‑terminal domain. Genes Dev. 15, 3319–3329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hausmann S., Shuman S. 2002. Characterization of the CTD phosphatase Fcp1 from fission yeast. Preferential dephosphorylation of serine 2 versus serine 5. J. Biol. Chem. 277, 21213–21220.

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh A., Shuman S., Lima C.D. 2008. The structure of Fcp1, an essential RNA polymerase II CTD phosphatase. Mol. Cell. 32, 478–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bataille A.R., Jeronimo C., Jacques P., Laramée L., Fortin M., Forest A., Bergeron M., Hanes S.D., Robert F. 2012. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell. 45, 158–170.

    Article  CAS  PubMed  Google Scholar 

  23. Nojima T., Rebelo K., Gomes T., Grosso A.R., Proudfoot N.J., Carmo-Fonseca M. 2018. RNA polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during co-transcriptional splicing. Mol. Cell. 72, 369–379. e364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Visvanathan J., Lee S., Lee B., Lee J.W., Lee S.K. 2007. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 21, 744–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burkholder N.T., Mayfield J.E., Yu X., Irani S., Arce D.K., Jiang F., Matthews W.L., Xue Y., Zhang Y.J. 2018. Phosphatase activity of small C-terminal domain phosphatase 1 (SCP1) controls the stability of the key neuronal regulator RE1-silencing transcription factor (REST). J. Biol. Chem. 293, 16851–16861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun A.G., Wang M.G., Li B., Meng F.G. 2017. Down-regulation of miR-124 target protein SCP-1 inhibits neuroglioma cell migration. Eur. Rev. Med. Pharm. Sci. 21, 723–729.

    Google Scholar 

  27. Conti L., Crisafulli L., Caldera V., Tortoreto M., Brilli E., Conforti P., Zunino F., Magrassi L., Schiffer D., Cattaneo E. 2012. REST controls self-renewal and tumorigenic competence of human glioblastoma cells. PLoS One. 7, e38486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Osada H., Takahashi T. 2002. Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer. Oncogene. 21, 7421–7434.

    Article  CAS  PubMed  Google Scholar 

  29. Rubin S.M. 2013. Deciphering the retinoblastoma protein phosphorylation code. Trends Biochem. Sci. 38, 12–19.

    Article  CAS  PubMed  Google Scholar 

  30. Lundberg A.S., Weinberg R.A. 1998. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin–cdk complexes. Mol. Cell. Boil. 18, 753–761.

    Article  CAS  Google Scholar 

  31. Narasimha A.M., Kaulich M., Shapiro G.S., Choi Y.J., Sicinski P., Dowdy S.F. 2014. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife. 3, e02872. https://doi.org/10.7554/eLife.02872

  32. Knudsen E.S., Wang J.Y. 1997. Dual mechanisms for the inhibition of E2F binding to RB by cyclin-dependent kinase-mediated RB phosphorylation. Mol. Cell. Biol. 17, 5771–5783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rubin S.M., Gall A.L., Zheng N., Pavletich N.P. 2005. Structure of the Rb C-terminal domain bound to E2F1-DP1: A mechanism for phosphorylation-induced E2F release. Cell. 123, 1093–1106.

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe N., Arai H., Nishihara Y., Taniguchi M., Watanabe N., Hunter T., Osada H. 2004. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc. Natl. Acad. Sci. U. S. A. 101, 4419–4424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moiseeva T.N., Qian C., Sugitani N., Osmanbeyoglu H.U., Bakkenist C.J. 2019. WEE1 kinase inhibitor AZD1775 induces CDK1 kinase-dependent origin firing in unperturbed G1- and S-phase cells. Proc. Natl. Acad. Sci. U. S. A. 116, 23891–23893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maehama T., Taylor G.S., Slama J.T., Dixon J.E. 2000. A sensitive assay for phosphoinositide phosphatases. Anal. Biochem. 279, 248–250.

    Article  CAS  PubMed  Google Scholar 

  37. Kim Y.J., Bahk Y.Y. 2014. A study of substrate specificity for a CTD phosphatase, SCP1, by proteomic screening of binding partners. Biochem. Biophys. Res. Commun. 448, 189–194.

    Article  CAS  PubMed  Google Scholar 

  38. Kloet D.E., Polderman P.E., Eijkelenboom A., Smits L.M., van Triest M.H., van den Berg M.C., Groot Koerkamp M.J., van Leenen D., Lijnzaad P., Holstege F.C., Burgering B.M. 2015. FOXO target gene CTDSP2 regulates cell cycle progression through Ras and p21(Cip1/Waf1). Biochem. J. 469, 289–298.

    Article  CAS  PubMed  Google Scholar 

  39. Barbacid M. 1987. Ras genes. Annu. Rev. Biochem. 56, 779–827.

    Article  CAS  PubMed  Google Scholar 

  40. Cox A.D., Der C.J. 2003. The dark side of Ras: Regulation of apoptosis. Oncogene. 22, 8999–9006.

    Article  CAS  PubMed  Google Scholar 

  41. Stewart Z.A., Leach S.D., Pietenpol J.A. 1999. p21(Waf1/Cip1. Inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Mol. Cell. Biol. 19, 205–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kashuba V.I., Li J., Wang F., Senchenko V.N., Protopopov A., Malyukova A., Kutsenko A.S., Kadyrova E., Zabarovska V.I., Muravenko O.V., Zelenin A.V., Kisselev L.L., Kuzmin I., Minna J.D., Winberg G., et al. 2004. RBSP3 (HYA22) is a tumor suppressor gene implicated in major epithelial malignancies. Proc. Natl. Acad. Sci. U. S. A. 101, 4906–4911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Knockaert M., Sapkota G., Alarcón C., Massagué J., Brivanlou A.H. 2006. Unique players in the BMP pathway: Small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling. Proc. Natl. Acad. Sci. U. S. A. 103, 11940–11945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rahman M.S., Akhtar N., Jamil H.M., Banik R.S., Asaduzzaman S.M. 2015. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 3, 15005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wrighton K.H., Willis D., Long J., Liu F., Lin X., Feng X.H. 2006. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling. J. Biol. Chem. 281, 38365–38375.

    Article  CAS  PubMed  Google Scholar 

  46. Sun T., Fu J., Shen T., Lin X., Liao L., Feng X.H., Xu J. 2016. The small C-terminal domain phosphatase 1 inhibits cancer cell migration and invasion by dephosphorylating Ser(P)68-TWIST1 to accelerate TWIST1 protein degradation. J. Biol. Chem. 291, 11518–11528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liao P., Wang W., Li Y., Wang R., Jin J., Pang W., Chen Y., Shen M., Wang X., Jiang D., Pang J., Liu M., Lin X., Feng X.H., Wang P., Ge X. 2017. Palmitoylated SCP1 is targeted to the plasma membrane and negatively regulates angiogenesis. Elife. 6, e22058. https://doi.org/10.7554/eLife.22058

    Article  PubMed  PubMed Central  Google Scholar 

  48. Alonso A., Sasin J., Bottini N., Friedberg I., Friedberg I., Osterman A., Godzik A., Hunter T., Dixon J., Mustelin T. 2004. Protein tyrosine phosphatases in the human genome. Cell. 117, 699–711.

    Article  CAS  PubMed  Google Scholar 

  49. Sarbassov D.D., Guertin D.A., Ali S.M., Sabatini D.M. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 307, 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  50. Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., Jensen L.J., Mering C.V. 2019. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613.

    Article  CAS  PubMed  Google Scholar 

  51. Fernandes A.O., Campagnoni C.W., Kampf K., Feng J.M., Handley V.W., Schonmann V., Bongarzone E.R., Reyes S., Campagnoni A.T. 2004. Identification of a protein that interacts with the golli-myelin basic protein and with nuclear LIM interactor in the nervous system. J. Neurosci. Res. 75, 461–471.

    Article  CAS  PubMed  Google Scholar 

  52. Ma Y., Sekiya M., Kainoh K., Matsuda T., Iwasaki H., Osaki Y., Sugano Y., Suzuki H., Takeuchi Y., Miyamoto T., Yahagi N., Nakagawa Y., Matsuzaka T., Shimano H. 2020. Transcriptional co-repressor CtBP2 orchestrates epithelial-mesenchymal transition through a novel transcriptional holocomplex with OCT1. Biochem. Biophys. Res. Commun. 523, 354–360.

    Article  CAS  PubMed  Google Scholar 

  53. Roelofs A.J., Zupan J., Riemen A.H.K., Kania K., Ansboro S., White N., Clark S.M., De Bari C. 2017. Joint morphogenetic cells in the adult mammalian synovium. Nat. Commun. 8, 15040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huttlin E.L., Ting L., Bruckner R.J., Gebreab F., Gygi M.P., Szpyt J., Tam S., Zarraga G., Colby G., Baltier K., Dong R., Guarani V., Vaites L.P., Ordureau A., Rad R., et al. 2015. The BioPlex network: A systematic exploration of the human interactome. Cell. 162, 425–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ghosh A., Shuman S., Lima C.D. 2008. The structure of Fcp1, an essential RNA polymerase II CTD phosphatase. Mol. Cell. 32, 478–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Muttigi M.S., Han I., Park H.K., Park H., Lee S.H. 2016. Matrilin-3 role in cartilage development and osteoarthritis. Internat. J. Mol. Sci. 17 (4), 590. https://doi.org/10.3390/ijms17040590

    Article  CAS  Google Scholar 

  57. Ghosh A., Shuman S., Lima C.D. 2008. The structure of Fcp1, an essential RNA polymerase II CTD phosphatase. Mol. Cell. 32, 478–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thysen S., Cailotto F., Lories R. 2016. Osteogenesis induced by frizzled-related protein (FRZB) is linked to the netrin-like domain. Lab. Invest. J. Techn. Meth. Pathol. 96, 570–580.

    Article  CAS  Google Scholar 

  59. Vlahakis N.E., Young B.A., Atakilit A., Hawkridge A.E., Issaka R.B., Boudreau N., Sheppard D. 2007. Integrin alpha9beta1 directly binds to vascular endothelial growth factor (VEGF)-A and contributes to VEGF-A-induced angiogenesis. J. Biol. Chem. 282, 15187–15196.

    Article  CAS  PubMed  Google Scholar 

  60. Gebhardt C., Németh J., Angel P., Hess J. 2006. S100A8 and S100A9 in inflammation and cancer. Biochem. Pharmacol. 72, 1622–1631.

    Article  CAS  PubMed  Google Scholar 

  61. Otsubo K., Yoneda T., Kaneko A., Yagi S., Furukawa K., Chuman Y. 2018. Development of a substrate identification method for human scp1 phosphatase using phosphorylation mimic phage display. Protein Peptide Lett. 25, 76–83.

    Article  CAS  Google Scholar 

  62. Schwer B., Ghosh A., Sanchez A.M., Lima C.D., Shuman S. 2015. Genetic and structural analysis of the essential fission yeast RNA polymerase II CTD phosphatase Fcp1. RNA. 21, 1135–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang W., Liao P., Shen M., Chen T., Chen Y., Li Y., Lin X., Ge X., Wang P. 2016. SCP1 regulates c-Myc stability and functions through dephosphorylating c‑Myc Ser62. Oncogene. 35, 491–500.

    Article  CAS  PubMed  Google Scholar 

  64. Onder T.T., Gupta P.B., Mani S.A., Yang J., Lander E.S., Weinberg R.A. 2008. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68, 3645–3654.

    Article  CAS  PubMed  Google Scholar 

  65. Ma L.M., Liang Z.R., Zhou K.R., Zhou H., Qu L.H. 2016. 27-Hydroxycholesterol increases Myc protein stability via suppressing PP2A, SCP1 and FBW7 transcription in MCF-7 breast cancer cells. Biochem. Biophys. Res. Commun. 480, 328–333.

    Article  CAS  PubMed  Google Scholar 

  66. Qian W., Li Q., Wu X., Li W., Li Q., Zhang J., Li M., Zhang D., Zhao H., Zou X., Jia H., Zhang L. 2020. Deubiquitinase USP29 promotes gastric cancer cell migration by cooperating with phosphatase SCP1 to stabilize Snail protein. Oncogene. 39, 6802–6815.

    Article  CAS  PubMed  Google Scholar 

  67. Reifenberger G., Ichimura K., Reifenberger J., Elkahloun A.G., Meltzer P.S., Collins V.P. 1996. Refined mapping of 12q13–q15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res. 56, 5141–5145.

    CAS  PubMed  Google Scholar 

  68. Su Y.A., Lee M.M., Hutter C.M., Meltzer P.S. 1997. Characterization of a highly conserved gene (OS4) amplified with CDK4 in human sarcomas. Oncogene. 15, 1289–1294.

    Article  CAS  PubMed  Google Scholar 

  69. Ping Y., Deng Y., Wang L., Zhang H., Zhang Y., Xu C., Zhao H., Fan H., Yu F., Xiao Y., Li X. 2015. Identifying core gene modules in glioblastoma based on multilayer factor-mediated dysfunctional regulatory networks through integrating multi-dimensional genomic data. Nucleic Acids Res. 43, 1997–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brunet A., Bonni A., Zigmond M.J., Lin M.Z., Juo P., Hu L.S., Anderson M.J., Arden K.C., Blenis J., Greenberg M.E. 1999. AKT promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 96, 857–868.

    Article  CAS  PubMed  Google Scholar 

  71. Shamloo B., Usluer S. 2019. p21 in cancer research. Cancers (Basel). 11 (8), 1178. https://doi.org/10.3390/cancers11081178

    Article  CAS  PubMed Central  Google Scholar 

  72. Fernández-Medarde A., Santos E. 2011. Ras in cancer and developmental diseases. Genes Cancer. 2, 344–358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kashuba V.I., Pavlova T.V., Grigorieva E.V., Kutsenko A., Yenamandra S.P., Li J., Wang F., Protopopov A.I., Zabarovska V.I., Senchenko V., Haraldson K., Eshchenko T., Kobliakova J., Vorontsova O., Kuzmin I., et al. 2009. High mutability of the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) in cancer. PLoS One. 4, e5231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Senchenko V.N., Anedchenko E.A., Kondratieva T.T., Krasnov G.S., Dmitriev A.A., Zabarovska V.I., Pavlova T.V., Kashuba V.I., Lerman M.I., Zabarovsky E.R. 2010. Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer. BMC Cancer. 10, 75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Chakraborty C., Roychowdhury A., Samadder S., Roy A., Mandal R.K., Basu P., Roychoudhury S., Panda C.K. 2016. Association of P16-RBSP3 inactivation with phosphorylated RB1 overexpression in basal–parabasal layers of normal cervix unchanged during CACX development. Biochem. J. 473, 3221–3236.

    Article  CAS  PubMed  Google Scholar 

  76. Sinha S., Singh R.K., Alam N., Roy A., Roychoudhury S., Panda C.K. 2008. Frequent alterations of hMLH1 and RBSP3/HYA22 at chromosomal 3p22.3 region in early and late-onset breast carcinoma: clinical and prognostic significance. Cancer Sci. 99, 1984–1991.

    CAS  PubMed  Google Scholar 

  77. Ghosh A., Ghosh S., Maiti G.P., Sabbir M.G., Zabarovsky E.R., Roy A., Roychoudhury S., Panda C.K. 2010. Frequent alterations of the candidate genes hMLH1, ITGA9 and RBSP3 in early dysplastic lesions of head and neck: Clinical and prognostic significance. Cancer Sci. 101, 1511–1520.

    Article  CAS  PubMed  Google Scholar 

  78. Mitra S., Mazumder Indra D., Bhattacharya N., Singh R.K., Basu P.S., Mondal R.K., Roy A., Zabarovsky E.R., Roychoudhury S., Panda C.K. 2010. RBSP3 is frequently altered in premalignant cervical lesions: Clinical and prognostic significance. Genes, Chrom. Cancer. 49, 155–170.

    CAS  Google Scholar 

  79. Sarkar S., Panda C.K. 2018. Preferential allelic deletion of RBSP3, LIMD1 and CDC25A in head and neck squamous cell carcinoma: Implication in cancer screening and early detection. Cancer Biol. Therapy. 19, 631–635.

    Article  CAS  Google Scholar 

  80. Li J., Protopopov A., Wang F., Senchenko V., Petushkov V., Vorontsova O., Petrenko L., Zabarovska V., Muravenko O., Braga E., Kisselev L., Lerman M.I., Kashuba V., Klein G., Ernberg I., et al. 2002. NotI subtraction and NotI-specific microarrays to detect copy number and methylation changes in whole genomes. Proc. Natl. Acad. Sci. U. S. A. 99, 10724–10729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kashuba V., Dmitriev A.A., Krasnov G.S., Pavlova T., Ignatjev I., Gordiyuk V.V., Gerashchenko A.V., Braga E.A., Yenamandra S.P., Lerman M., Senchenko V.N., Zabarovsky E. 2012. NotI microarrays: novel epigenetic markers for early detection and prognosis of high grade serous ovarian cancer. Int. J. Mol. Sci. 13, 13352–13377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dmitriev A.A., Kashuba V.I., Haraldson K., Senchenko V.N., Pavlova T.V., Kudryavtseva A.V., Anedchenko E.A., Krasnov G.S., Pronina I.V., Loginov V.I., Kondratieva T.T., Kazubskaya T.P., Braga E.A., Yenamandra S.P., Ignatjev I., et al. 2012. Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays. Epigenetics. 7, 502–513.

    Article  CAS  PubMed  Google Scholar 

  83. Senchenko V.N., Kisseljova N.P., Ivanova T.A., Dmitriev A.A., Krasnov G.S., Kudryavtseva A.V., Panasenko G.V., Tsitrin E.B., Lerman M.I., Kisseljov F.L., Kashuba V.I., Zabarovsky E.R. 2013. Novel tumor suppressor candidates on chromosome 3 revealed by NotI-microarrays in cervical cancer. Epigenetics. 8, 409–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dmitriev A.A., Rudenko E.E., Kudryavtseva A.V., Krasnov G.S., Gordiyuk V.V., Melnikova N.V., Stakhovsky E.O., Kononenko O.A., Pavlova L.S., Kondratieva T.T., Alekseev B.Y., Braga E.A., Senchenko V.N., Kashuba V.I. 2014. Epigenetic alterations of chromosome 3 revealed by NotI-microarrays in clear cell renal cell carcinoma. BioMed Res. Int. 2014, 735292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Dmitriev A.A., Rosenberg E.E., Krasnov G.S., Gerashchenko G.V., Gordiyuk V.V., Pavlova T.V., Kudryavtseva A.V., Beniaminov A.D., Belova A.A., Bondarenko Y.N., Danilets R.O., Glukhov A.I., Kondratov A.G., Alexeyenko A., Alekseev B.Y., et al. 2015. Identification of novel epigenetic markers of prostate cancer by NotI-microarray analysis. Dis. Markers. 2015, 241301. https://doi.org/10.1155/2015/241301

  86. Duncavage E., Goodgame B., Sezhiyan A., Govindan R., Pfeifer J. 2010. Use of microRNA expression levels to predict outcomes in resected stage I non-small cell lung cancer. J. Thoracic Oncol. 5, 1755–1763.

    Article  Google Scholar 

  87. Zheng Y.S., Zhang H., Zhang X.J., Feng D.D., Luo X.Q., Zeng C.W., Lin K.Y., Zhou H., Qu L.H., Zhang P., Chen Y.Q. 2012. MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene. 31, 80–92.

    Article  PubMed  CAS  Google Scholar 

  88. Zhang L., He X., Li F., Pan H., Huang X., Wen X., Zhang H., Li B., Ge S., Xu X., Jia R., Fan X. 2018. The miR-181 family promotes cell cycle by targeting CTDSPL, a phosphatase-like tumor suppressor in uveal melanoma. J. Exp. Clin. Cancer Res. 37, 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Bernardi R., Pandolfi P.P. 2003. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene. 22, 9048–9057.

    Article  CAS  PubMed  Google Scholar 

  90. Giorgi C., Ito K., Lin H.K., Santangelo C., Wieckowski M.R., Lebiedzinska M., Bononi A., Bonora M., Duszynski J., Bernardi R., Rizzuto R., Tacchetti C., Pinton P., Pandolfi P.P. 2010. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science. 330, 1247–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bernardi R., Guernah I., Jin D., Grisendi S., Alimonti A., Teruya-Feldstein J., Cordon-Cardo C., Simon M.C., Rafii S., Pandolfi P.P. 2006. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature. 442, 779–785.

    Article  CAS  PubMed  Google Scholar 

  92. Lin Y.C., Lu L.T., Chen H.Y., Duan X., Lin X., Feng X.H., Tang M.J., Chen R.H. 2014. SCP phosphatases suppress renal cell carcinoma by stabilizing PML and inhibiting mTOR/HIF signaling. Cancer Res. 74, 6935–6946.

    Article  CAS  PubMed  Google Scholar 

  93. Zhu Y., Lu Y., Zhang Q., Liu J.J., Li T.J., Yang J.R., Zeng C., Zhuang S.M. 2012. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res. 40, 4615–4625.

    Article  CAS  PubMed  Google Scholar 

  94. Stellrecht C.M., Chen L.S. 2011. Transcription inhibition as a therapeutic target for cancer. Cancers. 3, 4170–4190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Morachis J.M., Huang R., Emerson B.M. 2011. Identification of kinase inhibitors that target transcription initiation by RNA polymerase II. Oncotarget. 2, 18–28.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Dong P., Xiong Y., Yu J., Chen L., Tao T., Yi S., Hanley S.J.B., Yue J., Watari H., Sakuragi N. 2018. Control of PD-L1 expression by miR-140/142/340/383 and oncogenic activation of the OCT4-miR-18a pathway in cervical cancer. Oncogene. 37, 5257–5268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Matsuoka H., Ando K., Swayze E.J., Unan E.C., Mathew J., Hu Q., Tsuda Y., Nakashima Y., Saeki H., Oki E., Bharti A.K., Mori M. 2020. CTDSP1 inhibitor rabeprazole regulates DNA-PKcs dependent topoisomerase I degradation and irinotecan drug resistance in colorectal cancer. PLoS One. 15, e0228002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-0400268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Senchenko.

Ethics declarations

The authors declare that they have no conflict of interest.

This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: CTD, C-terminal domain; CTDSP, C-terminal domain small phosphatase; CTDSP1/2/L, genes CTDSP1, CTDSP2, CTDSPL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzanov, G.A., Senchenko, V.N. SCP Phosphatases and Oncogenesis. Mol Biol 55, 459–469 (2021). https://doi.org/10.1134/S0026893321030092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321030092

Keywords:

Navigation