Skip to main content
Log in

Macrovipera lebetina obtusa Snake Venom as a Modulator of Antitumor Effect in S-180 Sarcoma Mouse Model

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Macrovipera lebetina obtusa (MLO) is a venomous snake endemic to Middle East. Here we describe the therapeutic potential of the MLO snake venom. In S-180 sarcoma-bearing mouse model, we showed that the MLO snake venom inhibits tumour growth by 50%. In human dermal microvascular endothelial cells (HMVEC-D), treatment with the MLO snake venom lead to an increase of expression levels of the vascular endothelial growth factor (VEGF), while the level of the expression of caspase 8 did not change. In HMVEC-D cells MLO snake venom induces necroptosis, rather than apoptosis. In the chick embryo chorioallantoic membrane (CAM) assay, exposure to MLO snake venom inhibited bFGF-induced angiogenesis by 22%. Taken together, these results indicate that the MLO snake venom has a potent cytotoxic activity. Regulated necroptic cell death pathway, which is engaged by MLO snake venom, may become a promising novel target for antitumor therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. WHO. 2002. World Health Organisation Classification of Tumours. Pathology and Genetics of Tumors of Soft Tissue and Bone. Eds. Fletcher C.D.M., Uni K.K., Mertens F. Lyon: IARC Press.

    Google Scholar 

  2. Cormier J.N., Pollock R.E. 2004. Soft tissue sarcomas. CA Cancer J. Clin. 54, 94–109.

    Article  Google Scholar 

  3. Dean B.J.F., Whitwell D. 2009. Epidemiology of bone and soft-tissue sarcomas. Orthop. Trauma. 23, 223–230.

    Article  Google Scholar 

  4. Folkman J. 1971. Tumor angiogenesis theraperutic implications. N. Engl. J. Med. 285, 1182–1186.

    Article  CAS  Google Scholar 

  5. Carmeliet P., Jain R.K. 2000. Angiogenesis in cancer and other diseases. Nature. 407, 249–257.

    Article  CAS  Google Scholar 

  6. Hashizume H., Baluk P., Morikawa S., McLean J.W., Thurston G., Roberge S., Jain R.K., McDonald D.M. 2000. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380.

    Article  CAS  Google Scholar 

  7. Senger D.R., Perruzzi C.A., Streit M., Koteliansky V.E., De Fougerolles A.R., Detmar M. 2002. The α1β1 and α2β1 integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am. J. Pathol. 160,195‒204.

    Article  CAS  Google Scholar 

  8. Ferrara N. 2002. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer. 2, 795–803.

    Article  CAS  Google Scholar 

  9. Folkman J. 2003. Fundamental concepts of the angiogenic process. Curr. Mol. Med. 3, 643–651.

    Article  CAS  Google Scholar 

  10. Naldini A., Carraro F. 2005. Role of inflammatory mediators in angiogenesis. Curr. Drug Targets Inflamm. Allergy. 4, 3–8.

    Article  CAS  Google Scholar 

  11. Lijnen H.R. 2008. Angiogenesis and obesity. Cardiovasc. Res. 78, 286–293.

    Article  CAS  Google Scholar 

  12. Carmeliet P., Jain R.K. 2011. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427.

    Article  CAS  Google Scholar 

  13. Benassi M.S., Gamberi G., Magagnoli G., Molendini L., Ragazzini P., Merli M., Chiesa F., Balladelli A., Manfrini M., Bertoni F. 2001. Metalloproteinase expression and prognosis in soft tissue sarcomas. Ann. Oncol. 12, 75–80.

    Article  CAS  Google Scholar 

  14. Hedlund E.M., Hosaka K., Zhong Z., Cao R., Cao Y. 2009. Malignant cell-derived PlGF promotes normalization and remodeling of the tumor vasculature. Proc. Natl. Acad. Sci. U. S. A. 106, 17505–17510.

    Article  CAS  Google Scholar 

  15. Marcinkiewicz C., Rosenthal L.A., Mosser D.M., Kunicki T.J., Niewiarowicz C. 1996. Immunological characterization of erististatin and echistatin binding sites on αIIbβ3 and ανβ3 integrins. Biochem. J. 317, 817–825.

    Article  CAS  Google Scholar 

  16. Marcinkiewicz C., Weinreb P.H., Calvete J.J., Kisiel D.G., Mousa S.A., Tuszynski G.P, Lobb R.R. 2003. Obtustatin: A potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. Cancer Res. 9, 2020–2023.

    Google Scholar 

  17. Marcinkewicz C. 2005. Functional characteristic of snake venom disintegrins: Potential therapeutic implication. Curr. Pharm. Des. 11, 815–827.

    Article  Google Scholar 

  18. Calvete J.J., Mureno-Murciano M.P., Theakston D.G., Kisiel D.G., Marcinkiewicz C. 2003. Snake venom disintegrins: Novel dimeric disintegrins and structural diversification by disulphide bond engineering. Biochem. J. 372, 725–734.

    Article  CAS  Google Scholar 

  19. Sanz L., Ayvazyan N., Calvete J.J. 2008. Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J. Proteomics. 71, 198–209.

    Article  CAS  Google Scholar 

  20. Brown M.C., Staniszewska I., Del Valle L., Tuszynski G.P., Marcinkiewicz C. 2008. Angiostatic activity of obtustatin as alpha1beta1 integrin inhibitor in experimental melanoma growth. Int. J. Cancer. 123, 2195–2203.

    Article  CAS  Google Scholar 

  21. Ghazaryan N., Movsisyan N., Macedo J., Vaz S., Ayvazyan N., Pardo L., Logarinho E. 2019. The antitumor efficacy of monomeric disintegrin obtustatin in S‑180 sarcoma mouse model. Invest. New Drugs. 37, 1044–1051.

    Article  CAS  Google Scholar 

  22. Ghazaryan N.A., Ghulikyan L., Kishmiryan A., Kirakosyan G., Nazaryan O., Ghevondyan T., Zakaryan N., Ayvazyan N.M. 2015. Anti-tumor effect investigation of obtustatin and crude Macrovipera lebetina obtusa venom in S-180 sarcoma bearing mice. Eur. J. Pharmacol. 11, 340–345.

    Article  Google Scholar 

  23. Najafov A., Chen H., Yuan J. 2017. Necroptosis and cancer. Trends Cancer. 3, 294–301.

    Article  CAS  Google Scholar 

  24. Huang Q., Li F., Liu X., Li W., Shi W., Liu F.F., O’Sullivan B., He Z., Peng Y., Tan A.C. 2011. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 17, 860–866.

    Article  CAS  Google Scholar 

  25. Liu X., He Y., Li F., Huang Q., Kato T.A., Hall R.P., Li C.Y. 2015. Caspase-3 promotes genetic instability and carcinogenesis. Mol. Cell. 58, 284–296.

    Article  CAS  Google Scholar 

  26. Mirzayans R., Andrais B., Kumar P., Murray D. 2016. The growing complexity of cancer cell response to DNA-damaging agents: Caspase 3 mediates cell death or survival? Int. J. Mol. Sci. 17 (5), 708.

    Article  Google Scholar 

  27. Wang G.L., Semenza G.L. 1993. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268, 21513–2158.

    Article  CAS  Google Scholar 

  28. Pugh C.W., Ratcliffe P.J. 2003. Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat. Med. 9, 677–684.

    Article  CAS  Google Scholar 

  29. Hirota K., Semenza G.L. 2006. Regulation of angiogenesis by hypoxiainducible factor 1. Crit. Rev. Oncol. Hematol. 59, 15–26.

    Article  Google Scholar 

  30. Liang H., Xiao J., Zhou Z., Wu J., Ge F., Li Z., Zhang H., Sun J., Li F., Liu R., Chen C. 2018. Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene. 37, 1961–1975.

    Article  CAS  Google Scholar 

  31. Aranda-Souza M., Rossato F., Costa R., Figueira T., Castilho R., Guarniere M., Nunes E., Coelho L., Correia M., Vercesi A.A. 2014. Lectin from Bothrops leucurus snake venom raises cytosolic calcium levels and promotes B16-F10 melanoma necrotic cell death via mitochondrial permeability transition. Toxicon. 2, 97–103.

    Article  Google Scholar 

  32. Ebrahim, K., Shirazi F., Mirakabadi A., Vatanpour H. 2015. Cobra venom cytotoxins: Apoptotic or necrotic agents? Toxicon. 108, 134–140.

    Article  CAS  Google Scholar 

  33. Prinholato da Silva C., Costa T.R., Paiva R.M.A., Cintra A.C.O., Menaldo D.L., Antunes L.M.G., Sampaio S.V. 2015. Antitumor potential of the myotoxin BthTX-I from Bothrops jararacussu snake venom: Evaluation of cell cycle alterations and death mechanisms induced in tumor cell lines. J. Venom. Anim. Toxins Incl. Trop. Dis. 21, 44.

    Article  CAS  Google Scholar 

  34. Stupack D.G., Cheresh D.A. 2002. Get a ligand, get a life: Integrins, signaling and cell survival. J. Cell Sci. 115, 3729–3738.

    Article  CAS  Google Scholar 

  35. Mcllwain D., Berger Th., Mak T. 2013. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 5, a008656.

    Google Scholar 

  36. D’Amelio M., Cavallucci V., Cecconi F. 2010. Neuronal caspase-3 signaling: Not only cell death. Cell Death Differ. 17, 1104–1114.

    Article  Google Scholar 

  37. Porter A., Jaènicke R. 1999. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6, 99–104.

    Article  CAS  Google Scholar 

Download references

Funding

This work was made possible by the research grant no. NS-biochem-2218 from the Armenian National Science and Education Fund (ANSEF) based in New York and State Committee of Science from Ministry of Education, Science, Culture and Sport of the Republic of Armenia no. 19YR-1F012.

Author information

Authors and Affiliations

Authors

Contributions

The text was submitted by the author(s) in English.

Corresponding author

Correspondence to N. Ghazaryan.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazaryan, N., Movsisyan, N., Macedo, J.C. et al. Macrovipera lebetina obtusa Snake Venom as a Modulator of Antitumor Effect in S-180 Sarcoma Mouse Model. Mol Biol 55, 405–412 (2021). https://doi.org/10.1134/S0026893321020217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020217

Keywords:

Navigation