Skip to main content
Log in

Changes in Titin Structure during Its Aggregation

  • STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

In this paper, the property of the muscle titin protein to form in vitro specific amyloid-like aggregates is discussed. The main difference from the known amyloid aggregates is the formation of a quaternary structure that resembles cross-β, with no changes in the secondary structure. Based on the results obtained earlier, as well as the results of this study, we make assumptions about changes in the structure of titin that occur during the formation of amyloid-like aggregates. In particular, our X-ray diffraction data on the titin aggregates suggest that β-strands in the aggregates of this protein are not located perpendicular to the fibril axis, as described for other amyloid proteins, but in parallel. The distance between the β-sheets in the aggregates may vary, and the β-sheets themselves are not strictly oriented along one of the axes, which can lead to the appearance of a diffuse ring reflection of ~8–12 Å. In this regard, the titin aggregates should not be called amyloid, but amyloid-like, with a quaternary structure that resembles cross-β. It cannot be excluded that the formation of this quaternary structure can also occur due to the partial unfolding of titin domains, followed by the interaction of open β-strands between neighboring domains and/or domains of neighboring molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Tsytlonok M., Craig P.O., Sivertsson E., Serquera D., Perrett S., Best R.B., Wolynes P.G., Itzhaki L.S. 2013. Complex energy landscape of a giant repeat protein. Structure. 21 (11), 1954–1965. https://doi.org/10.1016/j.str.2013.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tian P., Best R.B. 2016. Best structural determinants of misfolding in multidomain proteins. PLOS Comput. Biol. 12 (5), e1004933. https://doi.org/10.1371/journal.pcbi.1004933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Apic G., Gough J., Teichmann S.A. 2001. Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J. Mol. Biol. 310 (2), 311–325. https://doi.org/10.1006/jmbi.2001.4776

    Article  CAS  PubMed  Google Scholar 

  4. Ekman D., Björklund A.K., Frey-Skött J., Elofsson A. 2005. Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions. J. Mol. Biol. 348 (1), 231–243. https://doi.org/10.1016/j.jmb

    Article  CAS  PubMed  Google Scholar 

  5. Han J.H., Batey S., Nickson A.A., Teichmann S.A., Clarke J. 2007. The folding and evolution of multidomain proteins. J. Nat. Rev. Mol. Cell Biol. 8 (4), 319–330. https://doi.org/10.1038/nrm2144

    Article  CAS  Google Scholar 

  6. Dobson C.M. 2003. Protein folding and misfolding. Nature.426 (6968), 884–890. https://doi.org/10.1038/nature02261

    Article  CAS  PubMed  Google Scholar 

  7. Rousseau F., Schymkowitz J., Itzhaki L.S. 2012. Implications of 3D domain swapping for protein folding, misfolding and function. Adv. Exp. Med. Biol. 747, 137–152. https://doi.org/10.1007/978-1-4614-3229-6_9

    Article  CAS  PubMed  Google Scholar 

  8. Knowles T.P., Vendruscolo M., Dobson C.M. 2014. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15 (6), 384–396. https://doi.org/10.1038/nrm3810

    Article  CAS  PubMed  Google Scholar 

  9. Dobson C.M. 2004. Experimental investigation of protein folding and misfolding. Methods. 34 (1), 4–14. https://doi.org/10.1016/j.ymeth.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  10. Buxbaum J.N., Linke R.P. 2000. A molecular history of the amyloidosis. J. Mol. Biol. 421 (2–3), 142–159. https://doi.org/10.1016/j.jmb.2012.01.024

    Article  CAS  Google Scholar 

  11. Dobson C.M. 2004. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol.15 (1), 3–16. https://doi.org/10.1016/j.semcdb.2003.12.008

    Article  CAS  PubMed  Google Scholar 

  12. Freundt J.K., Linke W.A. 2019. Titin as a force-generating muscle protein under regulatory control. J. Appl. Physiol. 126 (5), 1474–1482. https://doi.org/10.1152/japplphysiol.00865.2018

    Article  CAS  PubMed  Google Scholar 

  13. Vikhlyantsev I.M., Podlubnaya Z.A. 2017. Nuances of electrophoresis study of titin/connectin. Biophys. Rev. 9 (3), 189–199. https://doi.org/10.1007/s12551-017-0266-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gregorio C.C., Granzier H., Sorimachi H., Labeit S. 1999. Muscle assembly: a titanic achievement? Curr. Opin. Cell Biol. 11 (1), 18–25. https://doi.org/10.1016/s0955-0674(99)80003-9

    Article  CAS  PubMed  Google Scholar 

  15. Giganti D., Yan K., Badilla C.L., Fernandez J.M., Alegre-Cebollada J. 2018. Disulfide isomerization reactions in titin immunoglobulin domains enable a mode of protein elasticity. Nat. Commun. 9 (1), 185. https://doi.org/10.1038/s41467-017-02528-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bobylev A.G., Galzitskaya O.V., Fadeev R.S., Bobyleva L.G., Yurshenas D.A., Molochkov N.V., Dovidchenko N.V., Selivanova O.M., Penkov N.V., Podlubnaya Z.A., Vikhlyantsev I.M. 2016. Smooth muscle titin forms in vitro amyloid aggregates. Biosci. Repts.36 (3), pii: e00334. https://doi.org/10.1042/BSR20160066

    Article  CAS  Google Scholar 

  17. Yakupova E.I., Vikhlyantsev I.M., Bobyleva L.G., Penkov N.V., Timchenko A.A., Timchenko M.A., Enin G.A., Khutzian S.S., Selivanova O.M., Bobylev A.G. 2018. Different amyloid aggregation of smooth muscles titin in vitro.J. Biomol. Struct. Dyn. 36 (9), 2237–2248. https://doi.org/10.1080/07391102.2017.1348988

    Article  CAS  PubMed  Google Scholar 

  18. Kim K., Keller T.C. 3rd. 2002. Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro.J. Cell. Biol. 156 (1), 101–112. https://doi.org/10.1083/jcb.200107037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fritz J.D., Swartz D.R., Greaser M.L. 1989. Factors affecting polyacryamide gel electrophoresis and electro-blotting of high-molecular-weight myofibrillar proteins. Anal. Biochem. 180 (2), 205–210. https://doi.org/10.1016/0003-2697(89)90116-4

    Article  CAS  PubMed  Google Scholar 

  20. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227 (5259), 680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  21. Towbin H., Staehelin T., Gordon J. 1989. Immunoblotting in the clinical laboratory. J. Clin. Chem. Clin. Biochem. 27 (8), 495–501.

    CAS  PubMed  Google Scholar 

  22. Kumar S., Walter J. 2011. Phosphorylation of amyloid beta (Aβ) peptides: A trigger for formation of toxic aggregates in Alzheimer’s disease. Aging. 3 (8), 803–812 https://doi.org/10.18632/aging.100362

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sunde M., Serpell L.C., Bartlam M., Fraser P.E., Pepys M.B., Blake C.C. 1997. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273 (3), 729–739. https://doi.org/10.1006/jmbi.1997.1348

    Article  CAS  PubMed  Google Scholar 

  24. Nelson R., Eisenberg D. 2006. Recent atomic models of amyloid fibril structure. Curr. Opin. Struct. Biol. 16 (2), 260–265. https://doi.org/10.1016/j.sbi.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  25. Makin O.S., Serpell L.C. 2005. Structures for amyloid fibrils. FEBS J.272 (23), 5950–5961. https://doi.org/10.1111/j.1742-4658.2005.05025.x

    Article  CAS  PubMed  Google Scholar 

  26. Astbury W.T., Dickinson S., Bailey K. 1935. The X-ray diffraction interpretation of denaturation and the structure of seed globulins. Biochem. J.29 (10), 2351–2360. https://doi.org/10.1042/bj0292351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eanes E.D., Glenner G.G. 1968. X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 16 (11), 673–677. https://doi.org/10.1177/16.11.673

    Article  CAS  PubMed  Google Scholar 

  28. Jahn T.R., Makin O.S., Morris K.L., Marshall K.E., Tian P., Sikorski P., Serpell L.C. 2010. The common architecture of cross-beta amyloid. J. Mol. Biol. 395 (4), 717–727. https://doi.org/10.1016/j.jmb.2009.09.039

    Article  CAS  PubMed  Google Scholar 

  29. Eisenberg D., Jucker M. 2012. The amyloid state of proteins in human diseases. Cell. 148 (6), 1188–1203. https://doi.org/10.1016/j.cell.2012.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wille H., Bian W., McDonald M., Kendall A., Colby D.W., Bloch L., Ollesch J., Borovinskiy A.L., Cohen F.E., Prusiner S.B., Stubbs G. 2009. Natural and synthetic prion structure from X-ray fiber diffraction. Proc. Natl. Acad. Sci. U. S. A.106 (40), 16990–16995. https://doi.org/10.1073/pnas.0909006106

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pauling L., Corey R. 1953. Two rippled-sheet configurations of polypeptide chains, and a note about the pleated sheets. Proc. Natl. Acad. Sci. U. S. A.39 (4), 253–256. https://doi.org/10.1073/pnas.39.4.253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morris K.L., Serpell L.C. 2012. X-ray fibre diffraction studies of amyloid fibrils. Methods Mol. Biol. 849, 121–135. https://doi.org/10.1007/978-1-61779-551-0_9

    Article  CAS  PubMed  Google Scholar 

  33. Inouye H., Fraser P., Kirchner D. 1993. Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by X-ray diffraction. Biophys. J.64 (2), 502–519. https://doi.org/10.1016/S0006-3495(93)81393-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Selivanova O.M., Grigorashvili E.I., Suvorina M.Y., Dzhus U.F., Nikulin A.D., Marchenkov V.V., Surin A.K., Galzitskaya O.V. 2016. X-ray diffraction and electron microscopy data for amyloid formation of Aβ40 and Aβ42. Data Brief. 8, 108–113. https://doi.org/10.1016/j.dib.2016.05.020

    Article  PubMed  PubMed Central  Google Scholar 

  35. Clarke J., Cota E., Fowler S.B., Hamill S.J. 1999. Folding studies of immunoglobulin-like beta-sandwich proteins suggest that they share a common folding pathway. Structure. 7 (9), 1145–1153 https://doi.org/10.1016/s0969-2126(99)80181-6

    Article  CAS  PubMed  Google Scholar 

  36. Erickson H.P. 1994. Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc. Natl. Acad. Sci. U. S. A.91 (21), 10114–10118. https://doi.org/10.1073/pnas.91.21.10114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Borgia A., Kemplen K.R., Borgia M.B., Soranno A., Shammas S., Wunderlich B., Nettels D., Best R.B., Clarke J., Schuler B. 2015. Transient misfolding dominates multidomain protein folding. Nat. Commun. 6, 8861. https://doi.org/10.1038/ncomms9861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bianco P., Martonfalvi Z., Naftz K., Koszegi D., Kellermayer M. 2015. Titin domains progressively unfolded by force are homogenously distributed along the molecule. Biophys. J.109 (2), 340–345. https://doi.org/10.1016/j.bpj.2015.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martonfalvi Z., Bianco P., Naftz K., Ferenczy G.G., Kellermayer M. 2017. Force generation by titin folding. Protein Sci. 26 (7), 1380–1390. https://doi.org/10.1002/pro.3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rivas-Pardo J.A., Eckels E.C., Popa I., Kosuri P., Linke W.A., Fernández J.M. 2016. Work done by titin protein folding assists muscle contraction. Cell Reports. 14 (6), 1339–1347. https://doi.org/10.1016/j.celrep.2016.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eckels E.C., Haldar Sh., Tapia-Rojo R., Rivas-Pardo J.A., Fernández J.M. 2019. The mechanical power of titin folding. Cell Rep. 27 (6), 1836–1847. https://doi.org/10.1016/j.celrep.2019.04.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project nos. 18-04-00125, 19-34-90054 “Graduate students”) and a grant from the Russian Science Foundation (no. 19-74-10051) for E. Yakupova with use of the equipment of the Regional Pushchino Collective Use Center “Structural and Functional Research of Biosystems” of the Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, and the Electron Microscopy Sector of the Central Scientific and Research Center of Biomedical Sciences, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Bobylev or I. M. Vikhlyantsev.

Ethics declarations

The authors declare they have no conflict of interest.

This article does not contain any research involving humans or animals as research objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, A.G., Yakupova, E.I., Bobyleva, L.G. et al. Changes in Titin Structure during Its Aggregation. Mol Biol 54, 578–585 (2020). https://doi.org/10.1134/S0026893320040044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320040044

Keywords:

Navigation