Skip to main content

Implications of 3D Domain Swapping for Protein Folding, Misfolding and Function

  • Chapter
Protein Dimerization and Oligomerization in Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 747))

Abstract

Three-dimensional domain swapping is the process by which two identical protein chains exchange a part of their structure to form an intertwined dimer or higher-order oligomer. The phenomenon has been observed in the crystal structures of a range of different proteins. In this chapter we review the experiments that have been performed in order to understand the sequence and structural determinants of domain-swapping and these show how the general principles obtained can be used to engineer proteins to domain swap. We discuss the role of domain swapping in regulating protein function and as one possible mechanism of protein misfolding that can lead to aggregation and disease. We also review a number of interesting pathways of macromolecular assembly involving β-strand insertion or complementation that are related to the domain-swapping phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crestfield AM, Stein WH, Moore S. On the aggregation of bovine pancreatic ribonuclease. Arch Biochem Biophys 1962; 1:217–222.

    CAS  PubMed  Google Scholar 

  2. Jackson DA, Yanofsky C. Restoration of enzymatic activity by complementation in vitro between mutant alpha subunits of tryptophan synthetase and between mutant subunits and fragments of the alpha subunit. J Biol Chem 1969; 244:4539–4546.

    CAS  PubMed  Google Scholar 

  3. London J, Skrzynia C, Goldberg ME. Renaturation of Escherichia coli tryptophanase after exposure to 8M urea. Evidence for the existence of nucleation centers. Eur J Biochem 1974; 47:409–415.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson WF, Ohlendorf DH, Takeda Y et al. Structure of the cro repressor from bacteriophage lambda and its interaction with DNA. Nature 1981; 290:754–8.

    Article  CAS  PubMed  Google Scholar 

  5. Fita I, Rossmann MG. The NADPH binding site on beef liver catalase. Proc Natl Acad Sci 1985; 82:1604–1608.

    Article  CAS  PubMed  Google Scholar 

  6. Parge HE, Arvai AS, Murtari DJ et al. Human CksHs2 atomic structure: a role for its hexameric assembly in cell cycle control. Science 1993; 262:387–95.

    Article  CAS  PubMed  Google Scholar 

  7. Remington S, Wiegand G, Huber R. Crystallographic refinement and atomic models of two different forms of citrate synthase at 2.7 and 1.7 A resolution. J Mol Biol 1982; 158:111–52.

    Article  CAS  PubMed  Google Scholar 

  8. Story RM, Weber IT, Steitz TA. The structure of the E. coli recA protein monomer and polymer. Nature 1992; 355:318–25.

    Article  CAS  PubMed  Google Scholar 

  9. Bennett MJ, Schlunegger MP, Eisenberg D. 3D domain swapping: A mechanism for oligomer assembly. Prot Sci 1995; 4:2455–2468.

    Article  CAS  Google Scholar 

  10. Bennett MJ, Choe S, Eisenberg D. Domain swapping: entangling alliances between proteins. Proc Nat Acad Sci USA 1994; 91:3127–3131.

    Article  CAS  PubMed  Google Scholar 

  11. Schlunegger MP, Bennett MJ, Eisenberg D. Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv Protein Chem 1997; 50:61–122.

    Article  CAS  PubMed  Google Scholar 

  12. Schiering N, Casale E, Caccia P et al. Dimer formation through domain swapping in the crystal structure of the Grb2-SH2-Ac-pYVNV complex. Biochemistry 2000; 39:13376–13382.

    Article  CAS  PubMed  Google Scholar 

  13. Kishan KVR, Newcomer ME, Rhodes TH et al. Effect of pH and salt bridges on structural assembly: Molecular structures of the monomer and intertwined dimer of the Eps8 SH3 domain. Protein Science 2001; 10:1046–1055.

    Article  CAS  PubMed  Google Scholar 

  14. Chen YW, Stott K, Perutz MF. Crystal structure of a dimeric chymotrypsin inhibitor 2 mutant containing an inserted glutamine repeat. Proc Natl Acad Sci USA 1999; 96:1257–61.

    Article  CAS  PubMed  Google Scholar 

  15. Zegers I, Deswarte J, Wyns L. Trimeric domain-swapped barnase. Proc Natl Acad Sci USA 1999; 96:818–822.

    Article  CAS  PubMed  Google Scholar 

  16. Ivanov D, Stone JR, Maki JL et al. Mammalian SCAN domain dimer is a domain-swapped homolog of the HIV capsid C-terminal domain. Mol Cell 2005; 17:137–43.

    Article  CAS  PubMed  Google Scholar 

  17. Sawaya MR, Sambashivan S, Nelson R et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 2007; 447:453–7.

    Article  CAS  PubMed  Google Scholar 

  18. Stroud JC, Wu Y, Bates DL et al. Structure of the forkhead domain of FOXP2 bound to DNA. Structure 2006; 14:159–66.

    Article  CAS  PubMed  Google Scholar 

  19. Koon N, Squire CJ, Baker EN. Crystal structure of LeuA from Mycobacterium tuberculosis, a key enzyme in leucine biosynthesis. Proc Natl Acad Sci USA 2004; 101:8295–300.

    Article  CAS  PubMed  Google Scholar 

  20. Mazzarella L, Capasso S, Demasi D et al. Bovine seminal ribonuclease—structure at 1.9-Angstrom resolution. Acta Crystallogr D Biol Crystallogr 1993; 49:389–402.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Hart PJ, Schlunegger MP et al. The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution. Proc Natl Acad Sci USA 1998; 95:3437–42.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Gotte G, Libonati M et al. A domain-swapped RNase A dimer with implications for amyloid formation. Nat Struct Biol 2001; 8:211–4.

    Article  CAS  PubMed  Google Scholar 

  23. Esposito L, Daggett V. Insight into ribonuclease A domain swapping by molecular dynamics unfolding simulations. Biochemistry 2005; 44:3358–68.

    Article  CAS  PubMed  Google Scholar 

  24. Gotte G, Vottariello F, Libonati M. Thermal aggregation of ribonuclease A. A contribution to the understanding of the role of 3D domain swapping in protein aggregation. J Biol Chem 2003; 278:10763–9.

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Gotte G, Libonati M et al. Structures of the two 3D domain-swapped RNase A trimers. Protein Sci 2002; 11:371–80.

    Article  CAS  PubMed  Google Scholar 

  26. Piccoli R, Di Donato A, D’Alessio G. Co-operativity in seminal ribonuclease function. Kinetic studies. Biochem J 1988; 253:329–36.

    CAS  PubMed  Google Scholar 

  27. Didonato A, Cafaro V, Romeo I et al. Hints On the Evolutionary Design of a Dimeric Rnase With Special Bioactions. Protein Science 1995; 4:1470–1477.

    Article  CAS  Google Scholar 

  28. Ogihara NL, Ghirlanda G, Bryson JW et al. Design of three-dimensional domain-swapped dimers and fibrous oligomers. Proc Natl Acad Sci USA 2001; 98:1404–9.

    Article  CAS  PubMed  Google Scholar 

  29. Gordon-Smith DJ, Carbajo RJ, Stott K et al. Solution studies of chymotrypsin inhibitor-2 glutamine insertion mutants show no interglutamine interactions. Biochemical and Biophysical Research Communications 2001; 280:855–860.

    Article  CAS  PubMed  Google Scholar 

  30. Rousseau F, Schymkowitz JWH, Wilkinson HR et al. Three-dimensional domain swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline residues. Procl Natl Acad Sci USA 2001; 98:5596–5601.

    Article  CAS  Google Scholar 

  31. Bergdoll M, Eltis LD, Cameron AD et al. All in the family: Structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly. Protein Science 1998; 7:1661–1670.

    Article  CAS  PubMed  Google Scholar 

  32. Endicott JA, Noble ME, Garman EF et al. The crystal structure of p13suc1, a p34cdc2-interacting cell cycle control protein. EMBO J 1995; 14:1004–1014.

    CAS  PubMed  Google Scholar 

  33. Bourne Y, Arvai AS, Bernstein SL et al. Crystal structure of the cell cycle-regulatory protein suc1 reveals a beta-hinge conformational switch. Procl Natl Acad Sci USA 1995; 92:10232–10236.

    Article  CAS  Google Scholar 

  34. O’Neill JW, Kim DE, Johnsen K et al. Single-Site Mutations Induce 3D Domain Swapping in the B1 Domain of Protein L from Peptostreptococcus magnus. Structure (Camb) 2001; 9:1017–1027.

    Article  Google Scholar 

  35. Seeliger MA, Spichty M, Kelly SE et al. Role of conformational heterogeneity in domain swapping and adapter function of the Cks proteins. J Biol Chem 2005; 280:30448–59.

    Article  CAS  PubMed  Google Scholar 

  36. Landrieu I, Odaert B, Wieruszeski JM et al. p13SUC1 and the WW Domain of PIN1 Bind to the Same Phosphothreonine-Proline Epitope. J Biol Chem 2001; 276:1434–1438.

    Article  CAS  PubMed  Google Scholar 

  37. Byeon IJ, Louis JM, Gronenborn AM. A protein contortionist: core mutations of GB1 that induce dimerization and domain swapping. J Mol Biol 2003; 333:141–52.

    Article  CAS  PubMed  Google Scholar 

  38. Kirsten Frank M, Dyda F, Dobrodumov A et al. Core mutations switch monomeric protein GB1 into an intertwined tetramer. Nat Struct Biol 2002; 9:877–85.

    Google Scholar 

  39. Knaus KJ, Morillas M, Swietnicki W et al. Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol 2001; 8:770–4.

    Article  CAS  PubMed  Google Scholar 

  40. Janowski R, Kozak M, Jankowska E et al. Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol 2001; 8:316–320.

    Article  CAS  PubMed  Google Scholar 

  41. Nelson R, Eisenberg D. Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 2006; 16:260–5.

    Article  CAS  PubMed  Google Scholar 

  42. Nelson R, Sawaya MR, Balbirnie M et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature 2005; 435:773–8.

    Article  CAS  PubMed  Google Scholar 

  43. Ivanova MI, Sawaya MR, Gingery M et al. An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril. Proc Natl Acad Sci USA 2004; 101:10584–9.

    Article  CAS  PubMed  Google Scholar 

  44. Sambashivan S, Liu Y, Sawaya MR et al. Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 2005; 437:266–9.

    Article  CAS  PubMed  Google Scholar 

  45. Staniforth RA, Giannini S, Higgins LD et al. Three-dimensional domain swapping in the folded and moltenglobule states of cystatins, an amyloid-forming structural superfamily. EMBO Journal 2001; 20:4774–4781.

    Article  CAS  PubMed  Google Scholar 

  46. Eakin CM, Attenello FJ, Morgan CJ et al. Oligomeric assembly of native-like precursors precedes amyloid formation by beta-2 microglobulin. Biochemistry 2004; 43:7808–15.

    Article  CAS  PubMed  Google Scholar 

  47. Murray AJ, Head JG, Barker JJ et al. Engineering an intertwined form of CD2 for stability and assembly. Nature Structural Biology 1998; 5:778–782.

    Article  CAS  PubMed  Google Scholar 

  48. Spinelli S, Desmyter A, Frenken et al. Domain swapping of a llama VHH domain builds a crystal-wide beta-sheet structure. FEBS Lett 2004; 564:35–40.

    Article  CAS  PubMed  Google Scholar 

  49. Guo Z, Eisenberg D. Runaway domain swapping in amyloid-like fibrils of T7 endonuclease I. Proc Natl Acad Sci USA 2006; 103:8042–7.

    Article  CAS  PubMed  Google Scholar 

  50. Lawson CL, Benoff B, Berger T et al. coli trp repressor forms a domain-swapped array in aqueous alcohol. Structure 2004; 12:1099–108.

    Article  CAS  PubMed  Google Scholar 

  51. Zahn R, Liu A, Luhrs T et al. NMR solution structure of the human prion protein. Proc Natl Acad Sci USA 2000; 97:145–50.

    Article  CAS  PubMed  Google Scholar 

  52. Lee S, Eisenberg D. Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process. Nat Struct Biol 2003; 10:725–30.

    Article  CAS  PubMed  Google Scholar 

  53. Louis JM, Byeon IJ, Baxa U et al. The GB1 amyloid fibril: recruitment of the peripheral beta-strands of the domain swapped dimer into the polymeric interface. J Mol Biol 2005; 348:687–98.

    Article  CAS  PubMed  Google Scholar 

  54. Rocchi A, Pellegrini S, Siciliano G et al. Causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res Bull 2003; 61:1–24.

    Article  CAS  PubMed  Google Scholar 

  55. Choudhury D, Thompson A, Stojanoff V et al. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 1999; 285:1061–6.

    Article  CAS  PubMed  Google Scholar 

  56. Sauer FG, Futterer K, Pinkner JS et al. Structural basis of chaperone function and pilus biogenesis. Science 1999; 285:1058–61.

    Article  CAS  PubMed  Google Scholar 

  57. Remaut H, Waksman G. Structural biology of bacterial pathogenesis. Curr Opin Struct Biol 2004; 14:161–70.

    Article  CAS  PubMed  Google Scholar 

  58. Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature 2000; 407:923–6.

    Article  CAS  PubMed  Google Scholar 

  59. Lomas DA, Evans DL, Finch JT et al. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 1992; 357:605–7.

    Article  CAS  PubMed  Google Scholar 

  60. Stein PE, Carrell RW. What do dysfunctional serpins tell us about molecular mobility and disease? Nat Struct Biol 1995; 2:96–113.

    Article  CAS  PubMed  Google Scholar 

  61. Sharp HL, Bridges RA, Krivit W et al. Cirrhosis associated with alpha-1-antitrypsin deficiency: a previously unrecognized inherited disorder. J Lab Clin Med 1969; 73:934–9.

    CAS  PubMed  Google Scholar 

  62. Dafforn TR, Mahadeva R, Elliott PR et al. A kinetic mechanism for the polymerization of alpha1-antitrypsin. J Biol Chem 1999; 274:9548–55.

    Article  CAS  PubMed  Google Scholar 

  63. Davis RL, Holohan PD, Shrimpton AE et al. Familial encephalopathy with neuroserpin inclusion bodies. Am J Pathol 1999; 155:1901–13.

    Article  CAS  PubMed  Google Scholar 

  64. Davis RL, Shrimpton AE, Holohan PD et al. Familial dementia caused by polymerization of mutant neuroserpin. Nature 1999; 401:376–9.

    CAS  PubMed  Google Scholar 

  65. Belorgey D, Crowther DC, Mahadeva R et al. Mutant Neuroserpin (S49P) that causes familial encephalopathy with neuroserpin inclusion bodies is a poor proteinase inhibitor and readily forms polymers in vitro. J Biol Chem 2002; 277:17367–73.

    Article  CAS  PubMed  Google Scholar 

  66. Alberts B. Molecular biology of the cell. 3rd ed. New York. Garland Pub 1994.

    Google Scholar 

  67. Schreuder HA, de Boer B, Dijkema R et al. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nat Struct Biol 1994; 1:48–54.

    Article  CAS  PubMed  Google Scholar 

  68. Beauchamp NJ, Pike RN, Daly M et al. Antithrombins Wibble and Wobble (T85M/K): archetypal conformational diseases with in vivo latent-transition, thrombosis and heparin activation. Blood 1998; 92:2696–706.

    CAS  PubMed  Google Scholar 

  69. Zhou A, Huntington JA, Carrell RW. Formation of the antithrombin heterodimer in vivo and the onset of thrombosis. Blood 1999; 94:3388–96.

    CAS  PubMed  Google Scholar 

  70. Liu Y, Eisenberg D. 3D domain swapping: As domains continue to swap. Protein Sci 2002; 11:1285–99.

    Article  CAS  PubMed  Google Scholar 

  71. Sawaya MR, Guo S, Tabor S et al. Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 1999; 99:167–77.

    Article  CAS  PubMed  Google Scholar 

  72. Gallagher T, Alexander P, Bryan P et al. Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry 1994; 33:4721–9.

    Article  CAS  PubMed  Google Scholar 

  73. Shimba N, Kariya E, Tate S et al. Structural comparison between wild-type and P25S human cystatin A by NMR spectroscopy. Does this mutation affect the alpha-helix conformation? J Struct Funct Genomics 2000; 1:26–42.

    Article  CAS  PubMed  Google Scholar 

  74. Janowski R, Kozak M, Abrahamson M et al. 3D domain-swapped human cystatin C with amyloid-like intermolecular beta-sheets. Proteins 2005; 61:570–8.

    Article  CAS  PubMed  Google Scholar 

  75. Yamasaki M, Li W, Johnson DJ et al. Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 2008; 455(7217): 1255–8.

    Article  CAS  PubMed  Google Scholar 

  76. Kolodziejczyk R, Michalska K, Hernandez-Santoyo A et al. Crystal structure of human cystatin C stabilized against amyloid formation. FEBS J 2010; 277(7): 1726–37.

    Article  CAS  PubMed  Google Scholar 

  77. Yamasaki M, Sendall TJ, Pearce MC et al. Molecular basis of a1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Rep 2011; 12(10): 1011–7.

    Article  CAS  PubMed  Google Scholar 

  78. Liu C, Sawaya MR, Eisenberg D. ß2-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Nat Struct Mol Biol 2011; 18(1): 49–55.

    Article  PubMed  Google Scholar 

  79. Hafner-Bratkovic I, Bester R, Pristovsek P. Globular domain of the prion protein needs to be unlocked by domain swapping to support prion protein conversion. J Biol Chem 2011; 286(14): 12149–56.

    Article  CAS  PubMed  Google Scholar 

  80. Yang S, Cho SS, Levy Y et al. Domain swapping is a consequence of minimal frustration. Proc Natl Acad Sci U S A 2004; 101(38): 13786–91.

    Article  CAS  PubMed  Google Scholar 

  81. Levy Y, Cho SS, Onuchic JN, et al. A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes. J Mol Biol 2005; 346(4): 1121–45.

    Article  CAS  PubMed  Google Scholar 

  82. Cho SS, Levy Y, Onuchic JN et al. Overcoming residual frustration in domain-swapping: the roles of disulfide bonds in dimerization and aggregation. Phys Biol 2005; 2(2): S44–55.

    Article  CAS  PubMed  Google Scholar 

  83. Yang S, Levine H, Onuchic JN et al. Structure of infectious prions: stabilization by domain swapping. FASEB J 2005; 19(13): 1778–82.

    Article  CAS  PubMed  Google Scholar 

  84. Yang S, Levine H, Onuchic JN. Protein oligomerization through domain swapping: role of inter-molecular interactions and protein concentration. J Mol Biol 2005; 352(1): 202–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura S. Itzhaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Rousseau, F., Schymkowitz, J., Itzhaki, L.S. (2012). Implications of 3D Domain Swapping for Protein Folding, Misfolding and Function. In: Matthews, J.M. (eds) Protein Dimerization and Oligomerization in Biology. Advances in Experimental Medicine and Biology, vol 747. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3229-6_9

Download citation

Publish with us

Policies and ethics