Skip to main content
Log in

Attraction of Likenesses: Mechanisms of Self-Association and Compartmentalization of Eukaryotic Chromatin

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Chromatin packing in eukaryotic chromosomes has been traditionally viewed as a hierarchical process, in which nucleosome chains fold into helical chromatin fibers. These fibers would then fold into more complex regular structures. However, recent chromatin imaging studies and analyses of chromosomal DNA contacts within the 3D space of the cell nucleus have necessitated a radical revision of the hierarchical chromatin packing model. According to the new studies, the nucleosome chain has a free spatial configuration without regular helical fibers in most cell types. The overall 3D organization of DNA in the cell nucleus includes chromatin loops and contact domains of up to several million base pairs in size. During cell differentiation, individual structure-functional chromatin domains marked by similar types of histone modifications and functional states can merge together and form chromosomal subcompartments suited for local gene activation or repression. This “attraction of likenesses” may be mediated by direct self-association of nucleosome chains as well as by architectural chromatin proteins making oligomeric protein “bridges” between nucleosomes as well as larger dynamic condensates leading to liquid–liquid phase separation inside the cell nucleus. Future studies of mechanisms of chromatin self-association and compartmentalization will require a combination of molecular, imaging, and computational approaches capable of revealing the 3D organization of the eukaryotic genome with nucleosomal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Richmond T.J., Davey C.A. 2003. The structure of DNA in the nucleosome core. Nature.423, 145‒150.

    Article  CAS  PubMed  Google Scholar 

  2. Thoma F., Koller T., Klug A. 1979. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol.83, 403‒427.

    Article  CAS  PubMed  Google Scholar 

  3. Woodcock C.L., Grigoryev S.A., Horowitz R.A., Whitaker N. 1993. A chromatin folding model that incorporates linker variability generates fibers resembling the native structures. Proc. Natl. Acad. Sci. U. S. A.90, 9021‒9025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alberts B., Johnson A., Lewis J., Morgan D., Raff M., Roberts K., Walter P. 2015. Molecular Biology of the Cell, 6th ed. New York: Garland Science.

    Google Scholar 

  5. Hu Y., Kireev I., Plutz M., Ashourian N., Belmont A.S. 2009. Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template. J. Cell Biol.185, 87‒100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dorigo B., Schalch T., Kulangara A., Duda S., Schroeder R.R., Richmond T.J. 2004. Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science.306, 1571‒1573.

    Article  CAS  PubMed  Google Scholar 

  7. Schalch T., Duda S., Sargent D.F., Richmond T.J. 2005. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature.436, 138‒141.

    Article  CAS  PubMed  Google Scholar 

  8. Song F., Chen P., Sun D., Wang M., Dong L., Liang D., Xu R.M., Zhu P., Li G. 2014. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science.344, 376‒380.

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Saez I., Menoni H., Boopathi R., Shukla M.S., Soueidan L., Noirclerc-Savoye M., Le Roy A., Skoufias D.A., Bednar J., Hamiche A., Angelov D., Petosa C., Dimitrov S. 2018. Structure of an H1-bound 6-nucleosome array reveals an untwisted two-start chromatin fiber conformation. Mol. Cell.72, 902‒915.

    Article  CAS  PubMed  Google Scholar 

  10. Fussner E., Ching R.W., Bazett-Jones D.P. 2011. Living without 30 nm chromatin fibers. Trends Biochem. Sci.36, 1‒6.

    Article  CAS  PubMed  Google Scholar 

  11. Eltsov M., Maclellan K.M., Maeshima K., Frangakis A.S., Dubochet J. 2008. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ.Proc. Natl. Acad. Sci. U. S. A.105, 19732‒19737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ou H.D., Phan S., Deerinck T.J., Thor A., Ellisman M.H., O’Shea C.C. 2017. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science.357, 370.

    Article  CAS  Google Scholar 

  13. Cai S., Chen C., Tan Z.Y., Huang Y., Shi J., Gan L. 2018. Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo.Proc. Natl. Acad. Sci. U. S. A.115, 10977‒10982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ricci M.A., Manzo C., Garcia-Parajo M.F., Laka-damyali M., Cosma M.P. 2015. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo.Cell.160, 1145‒1158.

    Article  CAS  PubMed  Google Scholar 

  15. Nozaki T., Imai R., Tanbo M., Nagashima R., Tamura S., Tani T., Joti Y., Tomita M., Hibino K., Kanemaki M.T., Wendt K.S., Okada Y., Nagai T., Maeshima K. 2017. Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol. Cell.67, 282‒293. e7.

    Article  PubMed  CAS  Google Scholar 

  16. McDowall A.W., Smith J.M., Dubochet J. 1986. Cryo-electron microscopy of vitrified chromosomes in situ.EMBO J.5, 1395‒1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Joti Y., Hikima T., Nishino Y., Kamda F., Hihara S., Takata H., Ishikawa T., Maeshima K. 2012. Chromosomes without a 30-nm chromatin fiber. Nucleus.3, 404‒410.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hsieh T.H., Weiner A., Lajoie B., Dekker J., Friedman N., Rando O.J. 2015. Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell.162, 108‒119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hsieh T.-H.S., Slobodyanyuk E., Hansen A.S., Cattoglio C., Rando O.J., Tjian R., Darzacq X. 2019. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. bioRxiv. https://doi.org/10.1101/638775

  20. Grigoryev S.A., Bascom G., Buckwalter J.M., Schubert M.B., Woodcock C.L., Schlick T. 2016. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes. Proc. Natl. Acad. Sci. U. S. A.113, 1238‒1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Risca V.I., Denny S.K., Straight A.F., Greenleaf W.J. 2017. Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature.541, 237‒241.

    Article  CAS  PubMed  Google Scholar 

  22. Fang K., Chen X., Li X., Shen Y., Sun J., Czajkowsky D.M., Shao Z. 2018. Super-resolution imaging of individual human subchromosomal regions in situ reveals nanoscopic building blocks of higher-order structure. ACS Nano.12, 4909‒4918.

    Article  CAS  PubMed  Google Scholar 

  23. Kieffer-Kwon K.R., Nimura K., Rao S.S.P., Xu J., Jung S., Pekowska A., Dose M., Stevens E., Mathe E., Dong P., Huang S.C., Ricci M.A., Baranello L., Zheng Y., Tomassoni Ardori F., et al. 2017. Myc regulates chromatin decompaction and nuclear architecture during B cell activation. Mol. Cell.67, 566‒578 e10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chicano A., Crosas E., Oton J., Melero R., Engel B.D., Daban J.R. 2019. Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure. EMBO J.38, e99769.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Rao S.S., Huntley M.H., Durand N.C., Stamenova E.K., Bochkov I.D., Robinson J.T., Sanborn A.L., Machol I., Omer A.D., Lander E.S., Aiden E.L. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell.159, 1665‒1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nozawa R.S., Boteva L., Soares D.C., Naughton C., Dun A.R., Buckle A., Ramsahoye B., Bruton P.C., Saleeb R.S., Arnedo M., Hill B., Duncan R.R., Maciver S.K., Gilbert N. 2017. SAF-A regulates interphase chromosome structure through oligomerization with chromatin-associated RNAs. Cell.169, 1214–1227. e18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. van Steensel B., Belmont A.S. 2017. Lamina-associated domains: Links with chromosome architecture, hetero-chromatin, and gene repression. Cell.169, 780‒791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klosin A., Hyman A.A. 2017. Molecular biology: A liquid reservoir for silent chromatin. Nature.547, 168‒170.

    Article  CAS  PubMed  Google Scholar 

  29. Plys A.J., Kingston R.E. 2018. Dynamic condensates activate transcription. Science.361, 329‒330.

    Article  CAS  PubMed  Google Scholar 

  30. Spirin K.S., Grigoryev S.A., Krasheninnikov I.A.1988. Mechanism of formation of oligonucleosomal associates during electrophoresis. Mol. Biol. (Moscow). 22, 530‒538.

    Google Scholar 

  31. Grigoryev S.A., Spirin K.S., Solovieva V.O., Krashe-ninnikov I.A. 1990. A new positively charged nonhistone protein participates in the condensation of inactive chromatin at the terminal stage of the differentiation of chick erythrocytes. Dokl. Akad. Nauk SSSR. 312, 1266‒1271.

    Google Scholar 

  32. Grigoryev S.A., Spirin K.S., Krasheninnikov I.A. 1990. Loosened nucleosome linker folding in transcriptionally active chromatin of chicken embryo erythrocyte nuclei. Nucleic Acids Res.18, 7397‒7406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grigoryev S.A., Solovieva V.O., Spirin K.S., Krasheninnikov I.A. 1992. A novel nonhistone protein (MENT) promotes nuclear collapse at the terminal stage of avian erythropoiesis. Exp. Cell. Res.198, 268‒275.

    Article  CAS  PubMed  Google Scholar 

  34. Dubochet J., Noll M. 1978. Nucleosome arcs and helices. Science.202, 280‒286.

    Article  CAS  PubMed  Google Scholar 

  35. Leforestier A., Dubochet J., Livolant F. 2001. Bilayers of nucleosome core particles. Biophys. J.81, 2414‒2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mangenot S., Leforestier A., Durand D., Livolant F. 2003. X-ray diffraction characterization of the dense phases formed by nucleosome core particles. Biophys. J.84, 2570‒2584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bilokapic S., Strauss M., Halic M. 2018. Cryo-EM of nucleosome core particle interactions in trans.Sci. Rep.8, 7046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Luger K., Mader A.W., Richmond R.K., Sargent D.F., Richmond T.J. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature.389, 251‒260.

    Article  CAS  PubMed  Google Scholar 

  39. Harp J.M., Hanson B.L., Timm D.E., Bunick G.J. 2000. Asymmetries in the nucleosome core particle at 2.5 Å resolution. Acta Crystallogr. D: Biol. Crystallogr.56, 1513‒1534.

    Article  CAS  Google Scholar 

  40. White C.L., Suto R.K., Luger K. 2001. Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J.20, 5207‒5218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andrews A.J., Luger K. 2011. Nucleosome structure(s) and stability: variations on a theme. Annu. Rev. Biophys.40, 99‒117.

    Article  CAS  PubMed  Google Scholar 

  42. McGinty R.K., Tan S. 2016. Recognition of the nucleosome by chromatin factors and enzymes. Curr. Opin. Struct. Biol.37, 54‒61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Widom J. 1986. Physicochemical studies of the folding of the 100 Å nucleosome filament into the 300 Å filament. Cation dependence. J. Mol. Biol.190, 411‒424.

    Article  CAS  PubMed  Google Scholar 

  44. Clark D.J., Kimura T. 1990. Electrostatic mechanism of chromatin folding. J. Mol. Biol.211, 883‒896.

    Article  CAS  PubMed  Google Scholar 

  45. Manning G.S. 1978. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys.11, 179‒246.

    Article  CAS  PubMed  Google Scholar 

  46. Grigoryev S.A., Bednar J., Woodcock C.L. 1999. MENT, a heterochromatin protein that mediates higher order chromatin folding, is a new serpin family member. J. Biol. Chem.274, 5626‒5636.

    Article  CAS  PubMed  Google Scholar 

  47. Grigoryev S.A. 2004. Keeping fingers crossed: heterochromatin spreading through interdigitation of nucleosome arrays. FEBS Lett.564, 4‒8.

    Article  CAS  PubMed  Google Scholar 

  48. Grigoryev S.A., Bulynko Y.A., Popova E.Y. 2006. The end adjusts the means: Heterochromatin remodelling during terminal cell differentiation. Chromosome Res.14, 53‒69.

    Article  CAS  PubMed  Google Scholar 

  49. Simpson R.T., Thoma F., Brubaker J.M. 1985. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: A model system for study of higher order structure. Cell.42, 799‒808.

    Article  CAS  PubMed  Google Scholar 

  50. Lowary P.T., Widom J. 1998. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol.276, 19‒42.

    Article  CAS  PubMed  Google Scholar 

  51. Schwarz P.M., Hansen J.C. 1994. Formation and stability of higher order chromatin structures. Contributions of the histone octamer. J. Biol. Chem.269, 16284‒16289.

    CAS  PubMed  Google Scholar 

  52. Correll S.J., Schubert M.H., Grigoryev S.A. 2012. Short nucleosome repeats impose rotational modulations on chromatin fibre folding. EMBO J.31, 2416‒2426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bass M.V., Nikitina T., Norouzi D., Zhurkin V.B., Grigoryev S.A. 2019. Nucleosome spacing periodically modulates nucleosome chain folding and DNA topology in circular nucleosome arrays. J. Biol. Chem.294, 4233‒4246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hansen J.C. 2002. Conformational dynamics of the chromatin fiber in solution: Determinants, mechanisms, and functions. Annu. Rev. Biophys. Biomol. Struct.31, 361‒392.

    Article  CAS  PubMed  Google Scholar 

  55. Pepenella S., Murphy K.J., Hayes J.J. 2014. Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. Chromosoma.123, 3‒13.

    Article  CAS  PubMed  Google Scholar 

  56. Gao M., Nadaud P.S., Bernier M.W., North J.A., Hammel P.C., Poirier M.G., Jaroniec C.P. 2013. Histone H3 and H4 N-terminal tails in nucleosome arrays at cellular concentrations probed by magic angle spinning NMR spectroscopy. J. Am. Chem. Soc.135, 15278‒15281.

    Article  CAS  PubMed  Google Scholar 

  57. Luger K., Hansen J.C. 2005. Nucleosome and chromatin fiber dynamics. Curr. Opin. Struct. Biol.15, 188‒196.

    Article  CAS  PubMed  Google Scholar 

  58. Schwarz P.M., Felthauser A., Fletcher T.M., Hansen J.C. 1996. Reversible oligonucleosome self-association: Dependence on divalent cations and core histone tail domains. Biochemistry.35, 4009‒4015.

    Article  CAS  PubMed  Google Scholar 

  59. Carruthers L.M., Hansen J.C. 2000. The core pistone N termini function independently of linker histones during chromatin condensation. J. Biol. Chem.275, 37285‒37290.

    Article  CAS  PubMed  Google Scholar 

  60. Tse C., Hansen J.C. 1997. Hybrid trypsinized nucleosomal arrays: Identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction. Biochemistry.36, 11381‒11388.

    Article  CAS  PubMed  Google Scholar 

  61. Maeshima K., Rogge R., Tamura S., Joti Y., Hikima T., Szerlong H., Krause C., Herman J., Seidel E., DeLuca J., Ishikawa T., Hansen J.C. 2016. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers. EMBO J.35, 1115‒1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kan P.Y., Lu X., Hansen J.C., Hayes J.J. 2007. The H3 tail domain participates in multiple interactions during folding and self-association of nucleosome arrays. Mol. Cell Biol.27, 2084‒2091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kan P.Y., Caterino T.L., Hayes J.J. 2009. The H4 tail domain participates in intra- and internucleosome interactions with protein and DNA during folding and oligomerization of nucleosome arrays. Mol. Cell Biol.29, 538‒546.

    Article  CAS  PubMed  Google Scholar 

  64. Sinha D., Shogren-Knaak M.A. 2010. Role of direct interactions between the histone H4 tail and the H2A core in long range nucleosome contacts. J. Biol. Chem.285, 16572‒16581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou J., Fan J.Y., Rangasamy D., Tremethick D.J. 2007. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat. Struct. Mol. Biol.14, 1070‒1076.

    Article  CAS  PubMed  Google Scholar 

  66. Chodaparambil J.V., Barbera A.J., Lu X., Kaye K.M., Hansen J.C., Luger K. 2007. A charged and contoured surface on the nucleosome regulates chromatin compaction. Nat. Struct. Mol. Biol.14, 1105‒1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arya G., Schlick T. 2009. A tale of tails: How histone tails mediate chromatin compaction in different salt and linker histone environments. J. Phys. Chem. A.113, 4045‒4059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Grigoryev S.A., Arya G., Correll S., Woodcock C.L., Schlick T. 2009. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Proc. Natl. Acad. Sci. U. S. A.106, 13317‒13322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Collepardo-Guevara R., Portella G., Vendruscolo M., Frenkel D., Schlick T., Orozco M. 2015. Chromatin unfolding by epigenetic modifications explained by dramatic Impairment of internucleosome interactions: A multiscale computational study. J. Am. Chem. Soc.137, 10205‒10215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Soshnev A.A., Josefowicz S.Z., Allis C.D. 2016. Greater than the sum of parts: Complexity of the dynamic epigenome. Mol. Cell.62, 681‒694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li G., Reinberg D. 2011. Chromatin higher-order structures and gene regulation. Curr. Opin. Genet. Dev.21, 175‒186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tse C., Sera T., Wolffe A.P., Hansen J.C. 1998. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol.18, 4629‒4638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shogren-Knaak M., Ishii H., Sun J.M., Pazin M.J., Davie J.R., Peterson C.L. 2006. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science.311, 844‒847.

    Article  CAS  PubMed  Google Scholar 

  74. Chen Q., Yang R., Korolev N., Liu C.F., Nordenskiold L. 2017. Regulation of nucleosome stacking and chromatin compaction by the histone H4 N-terminal tail-H2A acidic patch interaction. J. Mol. Biol.429, 2075‒2092.

    Article  CAS  PubMed  Google Scholar 

  75. Turner A.L., Watson M., Wilkins O.G., Cato L., Travers A., Thomas J.O., Stott K. 2018. Highly disordered histone H1-DNA model complexes and their condensates. Proc. Natl. Acad. Sci. U. S. A.115, 11964‒11969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gibson B.A., Doolittle L.K., Jensen L.E., Gamarra N., Redding S., Rosen M.K. 2019. Organization and regulation of chromatin by liquid-liquid phase separation. bioRxiv. https://doi.org/10.1101/523662

  77. Yevreinova T.N. 1966. Kontsentrirovanie veshchestv i deistvie fermentov v koatservatakh (Concentration of Matter and Action of Enzymes in Coacervates). Ed. Oparin A.I. Moscow: Nauka.

    Google Scholar 

  78. Ernst J., Kheradpour P., Mikkelsen T.S., Shoresh N., Ward L.D., Epstein C.B., Zhang X., Wang L., Issner R., Coyne M., Ku M., Durham T., Kellis M., Bernstein B.E. 2011. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature.473, 43‒49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Weintraub H., Groudine M. 1976. Chromosomal subunits in active genes have an altered conformation. Science.193, 848‒856.

    Article  CAS  PubMed  Google Scholar 

  80. Weintraub H. 1984. Histone-H1-dependent chromatin superstructures and the suppression of gene activity. Cell.38, 17‒27.

    Article  CAS  PubMed  Google Scholar 

  81. Weintraub H. 1985. Assembly and propagation of repressed and depressed chromosomal states. Cell.42, 705‒711.

    Article  CAS  PubMed  Google Scholar 

  82. Kamakaka R.T., Thomas J.O. 1990. Chromatin structure of transcriptionally competent and repressed genes. EMBO J.9, 3997‒4006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Verreault A., Thomas J.O. 1993. Chromatin structure of the beta-globin chromosomal domain in adult chicken erythrocytes. Cold Spring Harb. Symp. Quant. Biol.58, 15‒24.

    Article  CAS  PubMed  Google Scholar 

  84. Felsenfeld G., Burgess-Beusse B., Farrell C., Gaszner M., Ghirlando R., Huang S., Jin C., Litt M., Magdinier F., Mutskov V., Nakatani Y., Tagami H., West A., Yusufzai T. 2004. Chromatin boundaries and chromatin domains. Cold Spring Harb. Symp. Quant. Biol.69, 245‒250.

    Article  CAS  PubMed  Google Scholar 

  85. Ridsdale J.A., Davie J.R. 1987. Chicken erythrocyte polynucleosomes which are soluble at physiological ionic strength and contain linker histones are highly enriched in beta-globin gene sequences. Nucleic Acids Res.15, 1081‒1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Heitz E. 1928. Das Heterochromatin der Moose. I. Jb. Wisensch. Bot.69, 762‒818.

    Google Scholar 

  87. Richards E.J., Elgin S.C. 2002. Epigenetic codes for heterochromatin formation and silencing: Rounding up the usual suspects. Cell.108, 489‒500.

    Article  CAS  PubMed  Google Scholar 

  88. Allshire R.C., Madhani H.D. 2018. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell. Biol.19, 229‒244.

    Article  CAS  PubMed  Google Scholar 

  89. Eissenberg J.C., Elgin S.C., Paro R. 2000. Epigenetic regulation in Drosophila: Unravelling the conspiracy of silence. in Chromatin Structure and Gene Expression. Eds. Elgin S.C.A., Workman J.L. Oxford, UK: Oxford Univ. Press, pp. 229‒251.

  90. Schotta G., Lachner M., Sarma K., Ebert A., Sengupta R., Reuter G., Reinberg D., Jenuwein T. 2004. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev.18, 1251‒1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Plath K., Mlynarczyk-Evans S., Nusinow D.A., Panning B. 2002. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet.36, 233‒278.

    Article  CAS  PubMed  Google Scholar 

  92. Fadloun A., Eid A., Torres-Padilla M.E. 2013. Mechanisms and dynamics of heterochromatin formation during mammalian development: Closed paths and open questions. Curr. Topics Dev. Biol.104, 1‒45.

    Article  CAS  Google Scholar 

  93. Popova E.Y., Krauss S.W., Short S.A., Lee G., Villalobos J., Etzell J., Koury M.J., Ney P.A., Chasis J.A., Grigoryev S.A. 2009. Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation. Chromosome Res.17, 47‒64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Popova E.Y., Grigoryev S.A., Fan Y., Skoultchi A.I., Zhang S.S., Barnstable C.J. 2013. Developmentally regulated linker histone H1c promotes heterochromatin condensation and mediates structural integrity of rod photoreceptors in mouse retina. J. Biol. Chem.288, 17895‒17907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Malik J., Lillis J.A., Couch T., Getman M., Steiner L.A. 2017. The methyltransferase Setd8 is essential for erythroblast survival and maturation. Cell Rep.21, 2376‒2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Weintraub H. 1978. The nucleosome repeat length increases during erythropoiesis in the chick. Nucleic Acids Res.5, 1179‒1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bates D.L., Thomas J.O. 1981. Histones H1 and H5: One or two molecules per nucleosome? Nucleic Acids Res.9, 5883‒5894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Scheffer M.P., Eltsov M., Frangakis A.S. 2011. Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei. Proc. Natl. Acad. Sci. U. S. A.108, 16992‒16997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kizilyaprak C., Spehner D., Devys D., Schultz P. 2010. In vivo chromatin organization of mouse rod photoreceptors correlates with histone modifications. PLoS One.5, e11039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Grigoryev S.A., Nikitina T., Pehrson J.R., Singh P.B., Woodcock C.L. 2004. Dynamic relocation of epigenetic chromatin markers reveals an active role of constitutive heterochromatin in the transition from proliferation to quiescence. J. Cell Sci.117, 6153‒6162.

    Article  CAS  PubMed  Google Scholar 

  101. Brown K.E., Baxter J., Graf D., Merkenschlager M., Fisher A. 1999. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol. Cell.3, 207‒218.

    Article  CAS  PubMed  Google Scholar 

  102. Schubeler D., Francastel C., Cimbora D.M., Reik A., Martin D.I., Groudine M. 2000. Nuclear localization and histone acetylation: A pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev.14, 940‒950.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bartova E., Kozubek S., Jirsova P., Kozubek M., Gajova H., Lukasova E., Skalnikova M., Ganova A., Koutna I., Hausmann M. 2002. Nuclear structure and gene activity in human differentiated cells. J. Struct. Biol.139, 76‒89.

    Article  CAS  PubMed  Google Scholar 

  104. Su R.C., Brown K.E., Saaber S., Fisher A.G., Merkenschlager M., Smale S.T. 2004. Dynamic assembly of silent chromatin during thymocyte maturation. Nat. Genet.36, 502‒506.

    Article  CAS  PubMed  Google Scholar 

  105. Sinclair P., Bian Q., Plutz M., Heard E., Belmont A.S. 2010. Dynamic plasticity of large-scale chromatin structure revealed by self-assembly of engineered chromosome regions. J. Cell Biol.190, 761‒776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Popova E.Y., Claxton D.F., Lukasova E., Bird P.I., Grigoryev S.A. 2006. Epigenetic heterochromatin markers distinguish terminally differentiated leukocytes from incompletely differentiated leukemia cells in human blood. Exp. Hematol.34, 453‒462.

    Article  CAS  PubMed  Google Scholar 

  107. Lukasova E., Koristek Z., Klabusay M., Ondrej V., Grigoryev S., Bacikova A., Rezacova M., Falk M., Vavrova J., Kohutova V., Kozubek S. 2013. Granulocyte maturation determines ability to release chromatin NETs and loss of DNA damage response; these properties are absent in immature AML granulocytes. Biochim. Biophys. Acta.1833, 767‒779.

    Article  CAS  PubMed  Google Scholar 

  108. Solovei I., Kreysing M., Lanctot C., Kosem S., Peichl L., Cremer T., Guck J., Joffe B. 2009. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell.137, 356‒368.

    Article  CAS  PubMed  Google Scholar 

  109. Meehan R.R., Kao C.F., Pennings S. 2003. HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. EMBO J.22, 3164‒3174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ryan D.P., Tremethick D.J. 2018. The interplay between H2A.Z and H3K9 methylation in regulating HP1alpha binding to linker histone-containing chromatin. Nucleic Acids Res.46, 9353‒9366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Thiru A., Nietlispach D., Mott H.R., Okuwaki M., Lyon D., Nielsen P.R., Hirshberg M., Verreault A., Murzina N.V., Laue E.D. 2004. Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J.23, 489‒499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Canzio D., Liao M., Naber N., Pate E., Larson A., Wu S., Marina D.B., Garcia J.F., Madhani H.D., Cooke R., Schuck P., Cheng Y., Narlikar G.J. 2013. A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature.496, 377‒381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Azzaz A.M., Vitalini M.W., Thomas A.S., Price J., Blacketer M.J., Cryderman D.E., Zirbel L.N., Woodcock C.L., Elcock A.H., Wallrath L.L., Shogren-Knaak M.A. 2014. Human heterochromatin protein 1alpha promotes nucleosome associations that drive chromatin condensation. J. Biol. Chem.289, 6850‒6861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hiragami-Hamada K., Soeroes S., Nikolov M., Wilkins B., Kreuz S., Chen C., De La Rosa-Velazquez I.A., Zenn H.M., Kost N., Pohl W., Chernev A., Schwarzer D., Jenuwein T., Lorincz M., Zimmermann B., et al. 2016. Dynamic and flexible H3K9me3 bridging via HP1beta dimerization establishes a plastic state of condensed chromatin. Nat. Commun.7, 11310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Machida S., Takizawa Y., Ishimaru M., Sugita Y., Sekine S., Nakayama J.I., Wolf M., Kurumizaka H. 2018. Structural basis of heterochromatin formation by human HP1. Mol. Cell.69, 385‒397, e8.

  116. Verschure P.J., van der Kraan I., de Leeuw W., van der Vlag J., Carpenter A.E., Belmont A.S., van Driel R. 2005. In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol. Cell Biol.25, 4552‒4564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Istomina N.E., Shushanov S.S., Springhetti E.M., Karpov V.L., Krasheninnikov I.A., Stevens K., Zaret K.S., Singh P.B., Grigoryev S.A. 2003. Insulation of the chicken beta-globin chromosomal domain from a chromatin-condensing protein, MENT. Mol. Cell Biol.23, 6455‒6468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gilbert N., Boyle S., Sutherland H., de Las Heras J., Allan J., Jenuwein T., Bickmore W.A. 2003. Formation of facultative heterochromatin in the absence of HP1. EMBO J.22, 5540‒5550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vakoc C.R., Mandat S.A., Olenchock B.A., Blobel G.A. 2005. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol. Cell.19, 381‒391.

    Article  CAS  PubMed  Google Scholar 

  120. Zhou B.R., Jiang J., Feng H., Ghirlando R., Xiao T.S., Bai Y. 2015. Structural mechanisms of nucleosome recognition by linker histones. Mol. Cell.59, 628‒638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bednar J., Garcia-Saez I., Boopathi R., Cutter A.R., Papai G., Reymer A., Syed S.H., Lone I.N., Tonchev O., Crucifix C., Menoni H., Papin C., Skoufias D.A., Kurumizaka H., Lavery R., et al. 2017. Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1. Mol. Cell.66, 384‒397, e8.

  122. Woodcock C.L., Skoultchi A.I., Fan Y. 2006. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res.14, 17‒25.

    Article  CAS  PubMed  Google Scholar 

  123. Grigoryev S.A., Woodcock C.L. 1993. Stage-specific expression and localization of MENT, a nuclear protein associated with chromatin condensation in terminally differentiating avian erythroid cells. Exp. Cell Res.206, 335‒343.

    Article  CAS  PubMed  Google Scholar 

  124. Springhetti E.M., Istomina N.E., Whisstock J.C., Nikitina T.V., Woodcock C.L., Grigoryev S.A. 2003. Role of the M-loop and reactive center loop domains in the folding and bridging of nucleosome arrays by MENT. J. Biol. Chem.278, 43384‒43393.

    Article  CAS  PubMed  Google Scholar 

  125. McGowan S., Buckle A.M., Irving J.A., Ong P.C., Bashtannyk-Puhalovich T.A., Kan W.T., Henderson K.N., Bulynko Y.A., Popova E.Y., Smith A.I., Bottomley S.P., Rossjohn J., Grigoryev S.A., Pike R.N., Whisstock J.C. 2006. X-ray crystal structure of MENT: Evidence for functional loop-sheet polymers in chromatin condensation. EMBO J.25, 3144‒3155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Arumugam P., Malik P. 2010. Genetic therapy for beta-thalassemia: From the bench to the bedside. Hematol. Am. Soc. Hematol. Edu. Program.2010, 445‒450.

    Article  Google Scholar 

  127. Becker J.S., McCarthy R.L., Sidoli S., Donahue G., Kaeding K.E., He Z., Lin S., Garcia B.A., Zaret K.S. 2017. Genomic and proteomic resolution of heterochromatin and its restriction of alternate fate genes. Mol. Cell.68, 1023‒1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Brero A., Easwaran H.P., Nowak D., Grunewald I., Cremer T., Leonhardt H., Cardoso M.C. 2005. Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation. J. Cell Biol.169, 733‒743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Agarwal N., Hardt T., Brero A., Nowak D., Rothbauer U., Becker A., Leonhardt H., Cardoso M.C. 2007. MeCP2 interacts with HP1 and modulates its hetero-chromatin association during myogenic differentiation. Nucleic Acids Res.35, 5402‒5408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rawlings J.S., Gatzka M., Thomas P.G., Ihle J.N. 2011. Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. Embo J. 30, 263–276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Terranova R., Sauer S., Merkenschlager M., Fisher A.G. 2005. The reorganisation of constitutive heterochromatin in differentiating muscle requires HDAC activity. Exp. Cell Res.20, 20.

    Google Scholar 

  132. Pinheiro I., Margueron R., Shukeir N., Eisold M., Fritzsch C., Richter F.M., Mittler G., Genoud C., Goyama S., Kurokawa M., Son J., Reinberg D., Lachner M., Jenuwein T. 2012. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell.150, 948‒960.

    Article  CAS  PubMed  Google Scholar 

  133. Adriaens C., Serebryannyy L.A., Feric M., Schibler A., Meaburn K.J., Kubben N., Trzaskoma P., Shachar S., Vidak S., Finn E.H., Sood V., Pegoraro G., Misteli T. 2018. Blank spots on the map: Some current questions on nuclear organization and genome architecture. Histochem. Cell Biol.150, 579‒592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shin Y., Brangwynne C.P. 2017. Liquid phase condensation in cell physiology and disease. Science.357, 1253.

    Article  CAS  Google Scholar 

  135. Wei M.T., Elbaum-Garfinkle S., Holehouse A.S., Chen C.C., Feric M., Arnold C.B., Priestley R.D., Pappu R.V., Brangwynne C.P. 2017. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat. Chem.9, 1118‒1125.

    Article  CAS  PubMed  Google Scholar 

  136. Kroschwald S., Maharana S., Mateju D., Malinovska L., Nuske E., Poser I., Richter D., Alberti S. 2015. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLlife.4, e06807.

    Article  Google Scholar 

  137. Welsh T.J., Shen Y., Levin A., Knowles T.P.J. 2018. Mechanobiology of protein droplets: Force arises from disorder. Cell.175, 1457‒1459.

    Article  CAS  PubMed  Google Scholar 

  138. Erdel F., Rippe K. 2018. Formation of chromatin subcompartments by phase separation. Biophys. J.114, 2262‒2270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tatavosian R., Kent S., Brown K., Yao T., Duc H.N., Huynh T.N., Zhen C.Y., Ma B., Wang H., Ren X. 2019. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J. Biol. Chem.294, 1451‒1463.

    Article  CAS  PubMed  Google Scholar 

  140. Chong S., Dugast-Darzacq C., Liu Z., Dong P., Dailey G.M., Cattoglio C., Heckert A., Banala S., Lavis L., Darzacq X., Tjian R. 2018. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science.361, 378.

    Article  CAS  Google Scholar 

  141. Wang R., Li Q., Helfer C.M., Jiao J., You J. 2012. The bromodomain protein Brd4 associated with acetylated chromatin is important for maintenance of higher-order chromatin structure. J. Biol. Chem.287, 10738–10752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sabari B.R., Dall’Agnese A., Boija A., Klein I.A., Coffey E.L., Shrinivas K., Abraham B.J., Hannett N.M., Zamudio A.V., Manteiga J.C., Li C.H., Guo Y.E., Day D.S., Schuijers J., Vasile E., et al. 2018. Coactivator condensation at super-enhancers links phase separation and gene control. Science.361, 412.

    Article  CAS  Google Scholar 

  143. Larson A.G., Narlikar G.J. 2018. The role of phase separation in heterochromatin formation, function, and regulation. Biochemistry.57, 2540‒2548.

    Article  CAS  PubMed  Google Scholar 

  144. Hirano T. 1999. SMC-mediated chromosome mechanics: A conserved scheme from bacteria to vertebrates? Genes. Dev.13, 11‒19.

    Article  CAS  PubMed  Google Scholar 

  145. Holmes V.F., Cozzarelli N.R. 2000. Closing the ring: Links between SMC proteins and chromosome partitioning, condensation, and supercoiling. Proc. Natl. Acad. Sci. U. S. A.97, 1322‒1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gruber S., Haering C.H., Nasmyth K. 2003. Chromosomal cohesin forms a ring. Cell.112, 765‒777.

    Article  CAS  PubMed  Google Scholar 

  147. Terakawa T., Bisht S., Eeftens J.M., Dekker C., Haering C.H., Greene E.C. 2017. The condensin complex is a mechanochemical motor that translocates along DNA. Science.358, 672‒676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ganji M., Shaltiel I.A., Bisht S., Kim E., Kalichava A., Haering C.H., Dekker C. 2018. Real-time imaging of DNA loop extrusion by condensin. Science.360, 102‒105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fudenberg G., Imakaev M., Lu C., Goloborodko A., Abdennur N., Mirny L.A. 2016. Formation of chromosomal domains by loop extrusion. Cell Rep.15, 2038‒2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vian L., Pekowska A., Rao S.S.P., Kieffer-Kwon K.R., Jung S., Baranello L., Huang S.C., El Khattabi L., Dose M., Pruett N., Sanborn A.L., Canela A., Maman Y., Oksanen A., Resch W., et al. 2018. The energetics and physiological impact of cohesin extrusion. Cell.173, 1165‒1178. e20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Consortium E.P. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature.489, 57‒74.

    Article  CAS  Google Scholar 

  152. Lieberman-Aiden E., van Berkum N.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O., Sandstrom R., Bernstein B., Bender M.A., Groudine M., Gnirke A., et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science.326, 289‒293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gibcus J.H., Dekker J. 2013. The hierarchy of the 3D genome. Mol. Cell.49, 773‒782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Razin S.V., Gavrilov A.A. 2018. Structural–functional domains of the eukaryotic genome. Biochemistry (Moscow). 83 (4), 302–312.

    CAS  PubMed  Google Scholar 

  155. Ulianov S.V., Khrameeva E.E., Gavrilov A.A., Flya-mer I.M., Kos P., Mikhaleva E.A., Penin A.A., Logacheva M.D., Imakaev M.V., Chertovich A., Gelfand M.S., Shevelyov Y.Y., Razin S.V. 2016. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res.26, 70‒84.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Gavrilov A.A., Shevelyov Y.Y., Ulianov S.V., Khrameeva E.E., Kos P., Chertovich A., Razin S.V. 2016. Unraveling the mechanisms of chromatin fibril packaging. Nucleus.7, 319‒324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nora E.P., Goloborodko A., Valton A.L., Gibcus J.H., Uebersohn A., Abdennur N., Dekker J., Mirny L.A., Bruneau B.G. 2017. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell.169, 930‒944. e22.

  158. Schwarzer W., Abdennur N., Goloborodko A., Pekowska A., Fudenberg G., Loe-Mie Y., Fonseca N.A., Huber W., Haering C.H., Mirny L., Spitz F. 2017. Two independent modes of chromatin organization revealed by cohesin removal. Nature.551, 51‒56.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Rao S.S.P., Huang S.C., Glenn St Hilaire B., Engreitz J.M., Perez E.M., Kieffer-Kwon K.R., Sanborn A.L., Johnstone S.E., Bascom G.D., Bochkov I.D., Huang X., Shamim M.S., Shin J., Turner D., Ye Z., et al. 2017. Cohesin loss eliminates all loop domains. Cell.171, 305‒320. e24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Solovei I., Wang A.S., Thanisch K., Schmidt C.S., Krebs S., Zwerger M., Cohen T.V., Devys D., Foisner R., Peichl L., Herrmann H., Blum H., Engelkamp D., Stewart C.L., Leonhardt H., Joffe B. 2013. LBR and Lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell.152, 584‒598.

    Article  CAS  PubMed  Google Scholar 

  161. Falk M., Feodorova Y., Naumova N., Imakaev M., Lajoie B.R., Leonhardt H., Joffe B., Dekker J., Fudenberg G., Solovei I., Mirny L.A. 2019. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature.570 (7761), 395–399. https://doi.org/10.1038/s41586-019-1275-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bascom G.D., Myers C.G., Schlick T. 2019. Mesoscale modeling reveals formation of an epigenetically driven HOXC gene hub. Proc. Natl. Acad. Sci. U. S. A.116, 4955‒4962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work of S. Grigoryev was supported by the U.S. National Science Foundation grant number 1516999.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Grigoryev.

Ethics declarations

The authors declare no conflict of interests.

This article contains no research involving human subjects or animals as the research objects.

Additional information

Abbreviations: EM, electron microscopy; cryo-EM, cryo-electron microscopy; TAD, topologically associating domain; EMANIC,  electron microscopy-assisted nucleosome interaction capture; RICC, radiation-induced spatially correlated cleavage of DNA with sequencing; Hi-C, high-throughput chromosome conformation capture; Micro-C, micrococcal nuclease-based analysis of chromosome folding; CTCF, CCCTC-Binding Factor; HP1, heterochromatin protein 1; MENT, myeloid and erythroid nuclear termination stage-specific protein; RСL, reactive center loop; SMC, structural maintenance of chromosomes, ENCODE, encyclopedia of DNA elements; ChIP-seq, chromatin immunoprecipitation and sequencing; LLPS, liquid–liquid phase separation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoryev, S.A., Popova, E.Y. Attraction of Likenesses: Mechanisms of Self-Association and Compartmentalization of Eukaryotic Chromatin. Mol Biol 53, 820–837 (2019). https://doi.org/10.1134/S0026893319060050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319060050

Keywords:

Navigation