Skip to main content
Log in

Identification of Two GLOBOSA-Like MADS-Box Genes in Tea Plant (Camellia sinensis [L.] O. Kuntze)

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Tea plant (Camellia sinensis [L.] O. Kuntze) is a woody crop of high economic importance worldwide; however, information on the molecular mechanisms underlying the regulation of flower development in this species is limited. In the present study, two GLOBOSA (GLO)-like MADS-box genes, CsGLO1 and CsGLO2, were isolated from C. sinensis ‘Ziyangzhong’ and were characterized to elucidate their roles in flower development. We found that CsGLO1 and CsGLO2 are nuclear-localized transcription factors without transactivation ability but with a robust interaction. They have similar patterns of expression, both mainly restricted to petals and stamens. Moreover, ectopic expression of either CsGLO1 or CsGLO2 in Arabidopsis thaliana resulted in a partial conversion of sepals to petals, suggesting full GLOBOSA functional activity. Our results indicate that CsGLO1 and CsGLO2 paralogs might redundantly contribute to petal and stamen, providing the first insight into their role in tea plant flower development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Meyerowitz E.M., Smyth D.R., Bowman J.L. 1989. Abnormal flowers and pattern formation in floral development. Development. 106, 209–217.

    Google Scholar 

  2. Coen E.S. 1991. The role of homeotic genes in floral development and evolution. Plant Mol. Biol. 42, 241–279.

    Google Scholar 

  3. Weigel D., Meyerowitz E.M. 1994. The ABCs of floral homeotic genes. Cell. 78, 203–209.

    Article  CAS  PubMed  Google Scholar 

  4. Ó’Maoiléidigh D.S., Graciet E., Wellmer F. 2014. Gene networks controlling Arabidopsis thaliana flower development. New Phytol. 201, 16–30.

  5. Wellmer F., Graciet E., Riechmann J.L. 2014. Specification of floral organs in Arabidopsis. J. Exp. Bot. 65, 1–9.

    Article  CAS  PubMed  Google Scholar 

  6. Gramzow L., Theissen G. 2010. A hitchhiker’s guide to the MADS world of plants. Genome Biol. 11, 214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang Y., Fanning L., Jack T. 2003. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J. 33, 47–59.

    Article  PubMed  Google Scholar 

  8. Sommer H., Beltran J.P., Huijser P., Pape H., Lönnig W.E., Saedler H., Schwarz-Sommer Z. 1990. DEFICIENS, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: The protein shows homology to transcription factors. EMBO J. 9, 605–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jack T., Brockman L.L., Meyerowitz E.M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell. 68, 683–697.

    Article  CAS  PubMed  Google Scholar 

  10. Tröbner W., Ramirez L., Motte P., Hue I., Huijser P., Lönnig W.E., Saedler H., Sommer H., Schwarz-Sommer Z. 1992. GLOBOSA: A homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11, 4693–4704.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Goto K., Meyerowitz E.M. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548–1560.

    Article  CAS  PubMed  Google Scholar 

  12. Viaene T., Vekemans D., Irish V.F., Geeraerts A., Huysmans S., Janssens S., Smets E., Geuten K. 2009. Pistillata–duplications as a mode for floral diversification in (Basal) asterids. Mol. Biol. Evol. 26, 2627–2645.

    Article  CAS  PubMed  Google Scholar 

  13. Winter K.U., Weiser C., Kaufmann K., Bohne A., Kirchner C., Kanno A., Saedler H., Theissen G. 2002. Evolution of class B floral homeotic proteins: Obligate heterodimerization originated from homodimerization. Mol. Biol. Evol. 19, 587–596.

    Article  CAS  PubMed  Google Scholar 

  14. Hernández-Hernández T., Martinez-Castilla L.P., Alvarez-Buylla E.R. 2007. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol. Biol. Evol. 24, 465–481.

    Article  CAS  PubMed  Google Scholar 

  15. De Martino G., Pan I., Emmanuel E., Levy A., Irish V.F. 2006. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell. 18, 1833–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rijpkema A.S., Royaert S., Zethof J., van der Weerden G., Gerats T., Vandenbusscheet M. 2006. Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell. 18, 1819–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Geuten K., Irish V. 2010. Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions. Plant Cell. 22, 2562–2578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vandenbussche M., Zethof J., Royaert S., Weterings K., Gerats T. 2004. The duplicated B-class heterodimer model: Whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell. 16, 741–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang J.S., Li Z., Zhao J., Zhang.S., Quan H., Zhao M., He C. 2014. Deciphering the Physalis floridana Double-Layered-Lantern1 mutant provides insights into functional divergence of the GLOBOSA duplicates within the Solanaceae. Plant Physiol. 164, 748–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang S., Zhang J.S., Zhao J., He C. 2015. Distinct subfunctionalization and neofunctionalization of the B-class MADS-box genes in Physalis floridana. Planta. 241, 387–402.

    Article  CAS  PubMed  Google Scholar 

  21. Yang C.S., Landau J.M. 2000. Effects of tea consumption on nutrition and health. J. Nutr. 130, 2409–2412.

    Article  CAS  PubMed  Google Scholar 

  22. Basu A., Sanchez K., Leyva M.J., Wu M., Betts N.M., Aston C.E., Lyons T.J. 2010. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J. Am. Coll. Nutr. 29, 31–40.

    Article  CAS  PubMed  Google Scholar 

  23. Mondal T.K., Bhattacharya A., Laxmikumaran M., Ahuja P.S. 2004. Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell Tissue Organ Cult. 76, 195–254.

    Article  CAS  Google Scholar 

  24. Takeda Y. 1990. Cross compatibility of tea (Camellia sinensis) and its allied species in the genus Camellia. Jpn. Agric. Resour. Q. 24, 111–116.

    Google Scholar 

  25. Tan L.Q., Wang L.Y., Wei K., Zhang C.-C., Wu L.-Y., Qi G.-N., Cheng H., Zhang Q., Cui Q.-M., Liang J.-B. 2013. Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS One. 8, e81611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hao X., Horvath D.P., Chao W.S., Yang Y., Wang X., Xiao B. 2014. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int. J. Mol. Sci. 15, 22155–22172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods. 25, 402–408.

    Article  CAS  Google Scholar 

  28. Walter M., Chaban C., Schütze K., Batistic O., Weckermann K., Näke C., Blazevic D., Grefen C., Schumacher K., Oecking C., Harter K., Kudla J. 2004. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428–438.

    Article  CAS  PubMed  Google Scholar 

  29. Clough S.J., Bent A.F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  CAS  PubMed  Google Scholar 

  30. Davis A.M., Hall A., Millar A.J., Darrah C., Davis S.J. 2009. Protocol: Streamlined sub-protocols for floral-dip transformation and selection of transformants in Arabidopsis thaliana. Plant Methods. 5, 3–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kramer E.M., Dorit R.L., Irish V.F. 1998. Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics. 149, 765–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hofer K.A., Albert V.A. 2012. The double-corolla phenotype in the Hawaiian lobelioid genus Clermontia involves ectopic expression of PISTILLATA B-function MADS box gene homologs. EvoDevo. 3, 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krizek B.A., Meyerowitz E.M. 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development. 122, 11–22.

    CAS  PubMed  Google Scholar 

  34. Wuest S.E., O’Maoileidigh D.S., Rae L., Kwasniewska K., Raganelli A., Hanczaryk K., Lohan A.J., Loftus B., Graciet E., Wellmer F. 2012. Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc. Natl. Acad. Sci. U. S. A. 33, 13452–13457.

    Article  Google Scholar 

  35. Prunet N., Jack T.P. 2014. Flower development in Arabidopsis: There is more to it than learning your ABCs. Methods Mol. Biol. 1110, 3–33.

    Article  PubMed  Google Scholar 

  36. Theissen G. 2001. Development of floral organ identity: Stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85.

    Article  CAS  PubMed  Google Scholar 

  37. Immink R.G., Kaufmann K., Angenent G.C. 2010. The ‘ABC’ of MADS domain protein behaviour and interactions. Semin. Cell Dev. Biol. 21, 87–93.

    Article  CAS  PubMed  Google Scholar 

  38. Theissen G., Saedler H. 2001. Plant biology. Floral quartets. Nature. 409, 469–471.

    Article  CAS  PubMed  Google Scholar 

  39. Leseberg C.H., Eissler C.L., Wang X., Johns M.A., Duvall M.R., Mao L. 2008. Interaction study of MADS-domain proteins in tomato. J. Exp. Botany. 59, 2253–2265.

    Article  CAS  Google Scholar 

  40. Ai Y., Zhang C., Sun Y., Wang W., He Y., Bao M. 2017. Characterization and functional analysis of five MADS-box B class genes related to floral organ identification in Tagetes erecta. PLoS ONE. 12, e0169777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Geuten K., Viaene T., Irish V.F. 2011. Robustness and evolvability in the B-system of flower development. Ann. Bot. 107, 1545–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu G. 2011. Isolation of B-function MADS-box gene in Camellia japonica and its potential role in double flower formation. Chinese Acad. Forestry. 1–102.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-J. Zhang.

Additional information

The article is published in the original.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Cao, QX., Jin, CM. et al. Identification of Two GLOBOSA-Like MADS-Box Genes in Tea Plant (Camellia sinensis [L.] O. Kuntze). Mol Biol 53, 13–23 (2019). https://doi.org/10.1134/S0026893319010199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319010199

Keywords:

Navigation