Skip to main content
Log in

Use of β Radiation to Localize the Binding Sites of Mercury Ions and Platinum-Containing Ligand in DNA

  • STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Composite sequence-specific ligands with DNA-damaging groups may dramatically increase the efficacy of radiotherapy. The most promising damage sensitizers are the atoms of heavy elements, in which electrons are emitted from upper orbitals and a multiply charged positive ion forms when an electron is kicked out from lower orbitals. The biophysical mechanisms of DNA damage produced by these sensitizers are far from fully understood. In this work, high-performance polyacrylamide gel electrophoresis (PAGE) in denaturing gel was used to investigate the nature of DNA cleavage on exposure to β radiation for complexes of heavy atom-containing ligands with DNA restriction fragments. It was demonstrated for the first time that DNA in complexes with Pt-bis-netropsin or mercury salts is cleaved in the vicinity of the heavy atom in the presence of radioactive isotopes emitting β particles of different energies. In the presence of 1M glycerol, the cleavage of the DNA sugar-phosphate backbone was almost entirely due to a neutralization of the multiply charged Auger ion and was not associated with the Auger electron electron-beam radiolysis. Based on the observations, a relatively simple technique was proposed for precise localization of binding sites for various DNA ligands containing a heavy atom. Analysis of the end groups at the cleavage point and the nature of damage to the complementary DNA chain made it possible to speculate about the mechanisms of direct influence of irradiation on a heavy atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Gursky G.V., Zasedatelev A.S., Zhuze A.L., Khorlin A.A., Grokhovsky S.L., Streltsov S.A., Surovaya A.N., Nikitin S.M., Krylov A.S., Retchinsky V.O., Mikhailov M.V., Beabealashvili R.S., Gottich B.P. 1983. Synthetic sequence-specific ligands. Cold Spring Harb. Symp. Quant. Biol. 47, 367−378.

    Article  PubMed  Google Scholar 

  2. Zimmer C., Wähnert U. 1986. Nonintercalating DNA-binding ligands: Specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Progr. Biophys. Mol. Biol. 47, 31−112.

    Article  CAS  Google Scholar 

  3. Surovaya A.N., Grokhovsky S.L., Bazhulina N.P., Gursky G.V. 2008. DNA-binding activity of bis-netropsin containing a cis-diaminoplatinum group between two netropsin fragments. Biophysics (Moscow). 53, 344–351.

    Article  Google Scholar 

  4. Waring M.J., Neidle, S. 2006. Sequence-Specific DNA Binding Agents. RSC Biomolecular Sciences, vol. 6. London: RSC Publishing.

    Book  Google Scholar 

  5. Blackledge M. S., Melander C. 2013. Programmable DNA-binding small molecules. Bioorg. Med. Chem. 21, 6101−6114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Taniguchi J., Pandian G.N., Hidaka T., Hashiya K., Bando T., Kim K.K., Sugiyama H. 2017. A synthetic DNA-binding inhibitor of SOX2 guides human induced pluripotent stem cells to differentiate into mesoderm. Nucleic Acids Res. 45, 9219−9228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kim Y. G., Cha J., Chandrasegaran S. 1996. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. U. S. A. 93, 1156−1160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sanjana N.E., Cong L., Zhou Y., Cunniff M.M., Feng G., Zhang F. 2012. A transcription activator-like effector toolbox for genome engineering. Nat. Protoc. 7, 171−192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Platzman R.L. 1952. In: Symposium on Radiobiology. Ed. Nickson J.J. New York: Wiley, 95−115.

  10. Feinendegen L.E. 1975. Biological damage from the Auger effect, possible benefits. Radiat. Environ. Biophys. 12, 85−99.

    Article  PubMed  CAS  Google Scholar 

  11. Portugal J., Barceló F. 2016. Noncovalent binding to DNA: Still a target in developing anticancer agents. Curr. Med. Chem. 23, 4108−4134.

    Article  PubMed  CAS  Google Scholar 

  12. Martin R.F., Feinendegen L.E. 2016. The quest to exploit the Auger effect in cancer radiotherapy: A reflective review. Int. J. Rad. Biol. 92, 617−632.

    Article  PubMed  CAS  Google Scholar 

  13. Grokhovsky S. L., Zubarev V. E. 1990. Specific cleavage of double-stranded DNA caused by X-ray ionization of the platinum atom. Dokl. Akad. Nauk SSSR. 313, 1500−1504.

    Google Scholar 

  14. Grokhovsky S.L., Zubarev V.E. 1991. Sequence-specific cleavage of double-stranded DNA caused by X-ray ionization of the platinum atom in the Pt-bis-netropsin‒DNA complex. Nucleic Acids Res. 19, 257−264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Grokhovsky S.L., Nikolaev V.A., Zubarev V.E., Suro-vaia A.N., Zhuze A.L., Chernov B.K., Sidorova N., Zasedatelev A.S. and Gursky G.V., 1992. Specific DNA cleavage by an analog of netropsin containing a copper(II) chelating peptide Gly-Gly-His. Mol. Biol. (Moscow). 26, 1274−1297.

    CAS  Google Scholar 

  16. Nikolaev V.A., Surovaya A.N., Sidorova Grokhovsky S.L., Zasedatelev A.S., Gursky G.V., Zhuze A.L. 1993. DNA-base-pair sequence-specific ligands: 10. Synthesis and binding to DNA of netropsin analogs containing a copper-chelating peptide. Mol. Biol. (Moscow). 27, 117−128.

    Google Scholar 

  17. Grokhovsky S.L., Gottikh B.P., Zhuze A.L. 1992. DNA base pair sequence specific ligands: 9. Synthesis of distamycin A and netropsin analogues containing a sarcolysin residue or a platinum(II) atom. Bioorg. Khim. 18, 313−324.

    Google Scholar 

  18. Sevilla M. D., Becker D., Kumar A., Adhikary A. 2016. Gamma and ion-beam irradiation of DNA: Free radical mechanisms, electron effects, and radiation chemical track structure. Rad. Phys. Chem. 128, 60−74.

    Article  CAS  Google Scholar 

  19. Yokoya A., Ito T. 2017. Photon-induced Auger effect in biological systems: A review. Int. J. Rad. Biol. 93, 743−756.

    Article  PubMed  CAS  Google Scholar 

  20. Halpern A., Stocklin G. 1977. Chemical and biological consequences of beta-decay. Rad. Environ. Biophys. 14, 257–274.

    Article  CAS  Google Scholar 

  21. Alloni D., Cutaia C., Mariotti L., Friedlandd W., Ottolenghi A. 2014. Modeling dose deposition and DNA damage due to low-energy beta-emitters. Radiat. Res. 182, 322–330.

    Article  PubMed  CAS  Google Scholar 

  22. Grokhovsky S., Il’icheva I., Nechipurenko D., Golovkin M., Taranov G., Panchenko L., Polozov R., Nechipurenko Y. 2012. Quantitative analysis of electrophoresis data: Application to sequence-specific ultrasonic cleavage of DNA. In: Gel Electrophoresis-Principles and Basics. London: InTech, pp. 218–238. doi 10.5772/2205

    Google Scholar 

  23. Grokhovsky S.L., Ilicheva I.A., Nechipurenko D.Yu., Golovkin M.V., Panchenko L.A., Polozov R.V., Nechipurenko Y.D. 2011. Sequence-specific ultrasonic cleavage of DNA. Biophys. J. 100, 117−125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Grokhovsky S.L., Surovaya A.N., Sidorova N.Ju., Gursky G.V. 1989. Synthesis of nonlinear sequence-specific DNA binding peptide with specificity determinants similar to those of 434 Cro repressor. Mol. Biol. (Moscow). 23, 1558−1580.

    Google Scholar 

  25. Grokhovsky S.L. 2006. Specificity of DNA cleavage by ultrasound. Mol. Biol. (Moscow). 40, 276–283.

    Article  CAS  Google Scholar 

  26. Das R., Laederach A., Pearlman S.M., Herschlag D., Altman R.B. 2005. SAFA: Semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA. 11, 344−354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Nechipurenko Yu.D., Golovkin M.V., Nechipurenko D.Yu., Il’icheva I.N., Panchenko L.A., Polozov R.V., Grokhovsky S.L., Gursky G.V. 2008. Quantitative methods for analysis of DNA cleavage by ultrasound. Mathematics, Computer, Education: Proc. 15th Int. Conf. Izhevsk, vol. 3, pp. 26–35.

  28. Tate W.P., Petersen G.B. 1975. Stability of pyrimidine oligodeoxyribonucleotides released during degradation of deoxyribonucleic acid with formic acid–diphenylamine reagent. Biochem. J. 147, 439–445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Tullius T.D. 1989. Physical studies of protein-DNA complexes by footprinting. Ann. Rev. Biophys. Biophys. Chem. 18, 213−237.

    Article  CAS  Google Scholar 

  30. Balasubramanian B., Pogozelski W.K., Tullius T.D. 1998. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl. Acad. Sci. U. S. A. 95, 9738−9743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pogozelski W.K., Tullius T.D. 1998. Oxidative strand scission of nucleic acids: Routes initiated by hydrogen abstraction from the sugar moiety. Chem. Rev. 98, 1089−1108.

    Article  PubMed  CAS  Google Scholar 

  32. Purkayastha S., Milligan J.R., Bernhard W.A. 2005. Correlation of free radical yields with strand break yields produced in plasmid DNA by the direct effect of ionizing radiation. J. Phys. Chem. B. 109, 16 967−16 973.

    Article  CAS  Google Scholar 

  33. Chan W., Chen B., Wang L., Taghizadeh K., Demott M.S., Dedon P.C. 2010. Quantification of the 2-deoxyribonolactone and nucleoside 5′-aldehyde products of 2‑deoxyribose oxidation in DNA and cells by isotope-dilution gas chromatography mass spectrometry: Differential effects of γ-radiation and Fe2+–EDTA. J. Am. Chem. Soc. 132, 6145−6153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Schroeder G.K., Lad C., Wyman P., Williams N.H., Wolfenden R. 2006. The time required for water attack at the phosphorus atom of simple phosphodiesters and of DNA. Proc. Natl. Acad. Sci. U. S. A. 103, 4052–4055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. von Sonntag C. 2006. Free-Radical-Induced DNA Damage and Its Repair. Berlin: Springer.

    Book  Google Scholar 

  36. Franchet-Beuzit J., Spotheim-Maurizot M., Sabattier R., Blazy-Baudras B., Charlier M. 1993. Radiolytic footprinting: Beta rays, gamma photons, and fast neutrons probe DNA–protein interactions. Biochemistry. 32, 2104−2110.

    Article  PubMed  CAS  Google Scholar 

  37. Grokhovsky S.L., Il’icheva I.A., Nechipurenko D.Yu., Panchenko L.A., Polozov R.V., Nechipurenko Yu.D. 2008. Ultrasonic cleavage of DNA: Quantitative analysis of sequence specificity. Biophysics (Moscow), 53, 250–252.

    Article  Google Scholar 

  38. Halpern A. 1982. In: Uses of Synchrotron Radiation in Biology. Ed. Stuhrmann H.B. London: Academic, pp. 255–283.

    Google Scholar 

  39. Halpern A., Stocklin G. 1977. Chemical and biological consequences of beta-decay. Radiat. Environ. Biophys. 14, 257−274.

    Article  PubMed  CAS  Google Scholar 

  40. Martin R.F., Pardee M. 1985. Preparation of carrier free [125I] iodoHoechst 33258. Int. J. Appl. Radiat. Isot. 36, 745−747.

    Article  PubMed  CAS  Google Scholar 

  41. Blagoi Yu.P., Galkin V.L., Gladchenko G.O., Kornilova S.V., Sorokin V.A., Schkorbatov A.G. 1991. Metal Complexes of Nucleic Acids in Solutions. Kiev: Naukova Dumka.

    Google Scholar 

  42. Kharatishvili M.G., Esipova N.G., Zhuze A.L., Grokhovskii S.L., Andronikashvili E.L. 1985. Formation of the left-handed helix during simultaneous treatment of poly[d(GC)] with bis-netropsin and Zn(II) ions. Biophysics (Moscow) 30, 701−703.

    CAS  Google Scholar 

  43. Leonarski F., D’Ascenzo L., Auffinger P. 2016. Mg2+ ions: Do they bind to nucleobase nitrogens? Nucleic Acids Res. 45. 987−1004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hadjiliadis N.D., Sletten E. (Eds.). 2009. Metal Complex–DNA Interactions. Chichester, UK: Wiley.

    Google Scholar 

  45. Gruenwedel D.W., Cruikshank M.K. 1989. Mercury-induced transitions between right-handed and putative left-handed forms of poly[d(AT)•d(AT)] and poly[d(GC)•d[(GC)]. Nucleic Acids Res. 17, 9075–9086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Grokhovsky S.L., Il’icheva I.A., Panchenko L.A., Golovkin M.V., Polozov R.V., Nechipurenko D.Y. 2013. Ultrasonic cleavage of DNA in complexes with Ag (I), Cu (II), Hg (II). Biophysics (Moscow). 58, 27−36.

    Article  CAS  Google Scholar 

  47. Gruenwedel D.W., Cruikshank M.K. 1990. Mercury-induced DNA polymorphism: Probing the conformation of mercury(II)-DNA via staphylococcal nuclease digestion and circular dichroism measurements. Biochemistry. 29, 2110−2116.

    Article  PubMed  CAS  Google Scholar 

  48. Swasey S.M., Leal L.E., Lopez-Acevedo O., Pavlovich J., Gwinn E.G. 2015. Silver(I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson–Crick constraints. Sci. Rep. 5, 10 163.

    Article  CAS  Google Scholar 

  49. Dairaku T., Furuita K., Sato H., Šebera J., Nakashima K., Ono A., Sychrovský V., Kojima C., Tanaka Y. 2016. Hg(II)/Ag(I)-mediated base pairs and their NMR spectroscopic studies. Inorg. Chim. Acta. 452, 34−42.

    Article  CAS  Google Scholar 

  50. Liu H., Cai C., Haruehanroengra P., Yao Q., Chen Y., Yang C., Luo Q., Wu B., Li J., Ma J. Sheng J. 2017. Flexibility and stabilization of Hg(II)-mediated C:T and T:T base pairs in DNA duplex. Nucleic Acids Res. 45, 2910−2918.

    PubMed  CAS  Google Scholar 

  51. Ding W., Xu M., Zhu H., Liang H. 2013. Mechanism of the hairpin folding transformation of thymine-cytosine-rich oligonucleotides induced by Hg(II) and Ag(I) ions. Eur. Phys. J. E. 36, 1−8.

    Article  CAS  Google Scholar 

  52. Stepanenko V.F., Yaskova E.K., Belukha I.G., Petriev V.M., Skvortsov V.G., Kolyzhenkov T.V., Petukhov A.D., Dubov D.V. 2015. The calculation of internal irradiation of nano-, micro- and macro-biostructures with electrons, beta particles and quantum radiation of different energy for the development and analysis of new radiopharmaceuticals in nuclear medicine. Radiatsiya i Risk. 24, 35−60.

    Google Scholar 

  53. Lee B.Q., Kibédi T., Stuchbery A.E., Robertson K.A. 2012. Atomic radiations in the decay of medical radioisotopes: A physics perspective. Comp. Math. Methods Med. 2012, ID 651475.

  54. Itala E., Kooser K., Rachlew E., Levola H., Ha D.T., Kukk E. 2015. Gas-phase study on uridine: Conformation and X-ray photofragmentation. J. Chem. Phys. 142, 194 303.

    Article  CAS  Google Scholar 

  55. McBride T.J., Preston B.D., Loeb L.A. 1991. Mutagenic spectrum resulting from DNA damage by oxygen radicals. Biochemistry. 30, 207−213.

    Article  PubMed  CAS  Google Scholar 

  56. Lobachevsky P., Clark G.R., Pytel P.D., Leung B., Skene C., Andrau L., White J.M., Karagiannis T., Cullinane C., Lee B.Q., Stuchbery A. 2016. Strand breakage by decay of DNA-bound 124I provides a basis for combined PET imaging and Auger endoradiotherapy. Int. J. Radiat. Biol. 92, 686–697.

    Article  PubMed  CAS  Google Scholar 

  57. Balagurumoorthy P., Xu X., Wang K., Adelstein S.J., Kassis A.I. 2012. Effect of distance between decaying 125I and DNA on Auger-electron induced double-strand break yield. Int. J. Radiat. Biol. 88, 998–1008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Jahnke T. 2015. Interatomic and intermolecular Coulombic decay: The coming of age story. J. Phys. B: At. Mol. Opt. Phys. 48, 082001.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Program of Basic Research at Russian Academies of Sciences from 2013 to 2020 (project no. 01201363818) and the Program for molecular and cell biology of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Grokhovsky.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grokhovsky, S.L. Use of β Radiation to Localize the Binding Sites of Mercury Ions and Platinum-Containing Ligand in DNA. Mol Biol 52, 732–748 (2018). https://doi.org/10.1134/S0026893318050072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318050072

Keywords:

Navigation