Skip to main content
Log in

Prediction of Bacterial and Archaeal Allergenicity with AllPred Program

  • Bioinformatics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Nowadays, allergic disorders have become one of the most important social problems in the world. This can be related to the advent of new allergenic agents in the environment, as well as an increasing density of human contact with known allergens, including various proteins. Thus, the development of computer programs designed for the prediction of allergenic properties of proteins becomes one of the urgent tasks of modern bioinformatics. Previously we developed a web accessible Allpred Program (http://www-bionet.sscc.ru/ psd/cgi-bin/programs/Allpred/allpred.cgi) that allows users to assess the allergenicity of proteins by taking into account the characteristics of their spatial structure. In this paper, using AllPred, we predicted the allergenicity of proteins from 462 archaea and bacteria species for which a complete genome was available. The segregation of considered proteins on archaea and bacteria has shown that allergens are predicted more often among archaea than among bacteria. The division of these proteins into groups according to their intracellular localization has revealed that the majority of allergenic proteins were among the secreted proteins. The application of methods for predicting the level of gene expression of microorganisms based on DNA sequence analysis showed a statistically significant relationship between the expression level of the proteins and their allergenicity. This analysis has revealed that potentially allergenic proteins were more common among highly expressed proteins. Sorting microorganisms into the pathogenic and nonpathogenic groups has shown that pathogens can potentially be more allergenic because of a statistically significant greater number of allergens predicted among their proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pawankar R., Canonica G.W., Holgate S.T., et al. 2011. WAO White Book on Allergy. Milwaukee, WI: World Allergy Organization.

    Google Scholar 

  2. Breiteneder H., Chapman M. D. 2014. Allergen nomenclature. In: Allergens and Allergen Immunotherapy, 5th ed. Eds. Lockey R.F., Ledford D.K. Boca Raton, FL: CRC Press, pp. 37–49.

    Chapter  Google Scholar 

  3. Sweeney T.E., Morton J.M. 2013. The human gut microbiome: A review of the effect of obesity and surgically induced weight loss. JAMA Surg. 148 (6), 563–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antranikian G., Vorgias C.E., Bertoldo C. 2005. Extreme environments as a resource for microorganisms and novel biocatalysts. In: Marine Biotechnology I, vol. 96. Berlin: Springer, pp. 219–262.

    Article  CAS  Google Scholar 

  5. Irwin J.A. 2010. Extremophiles and their application to veterinary medicine. Environ Technol. 31 (8–9), 857–869.

    Article  CAS  PubMed  Google Scholar 

  6. Van Den Burg B. 2003. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6 (3), 213–218

    Article  PubMed  Google Scholar 

  7. Pennisi E. 1997. Biotechnology: In industry, extremophiles begin to make their mark. Science. 276 (5313), 705–706.

    Article  CAS  PubMed  Google Scholar 

  8. Compare D., Nardone G. 2013. The role of gut microbiota in the pathogenesis and management of allergic diseases. Eur. Rev. Med. Pharmacol. 17 (Suppl. 2), 11–17.

    Google Scholar 

  9. Lynch S.V. 2016. Gut microbiota and allergic disease: New insights. Ann. Am. Thoracic Soc. 13 (Suppl. 1), S51–S54

    Google Scholar 

  10. Hollams E.M., Hales B.J., Bachert C., et al. 2010. Th2-associated immunity to bacteria in teenagers and susceptibility to asthma. Eur. Respir. J. 36 (3), 509–516.

    Article  CAS  PubMed  Google Scholar 

  11. Reginald K., Westritschnig K., Werfel T., et al. 2011. Immunoglobulin E antibody reactivity to bacterial antigens in atopic dermatitis patients. Clin. Exp. Allergy. 41 (3), 357–369.

    Article  CAS  PubMed  Google Scholar 

  12. Nahori M.A., Lagranderie M., Lefort J., et al. 2001. Effects of Mycobacterium bovis BCG on the development of allergic inflammation and bronchial hyperresponsiveness in hyper-IgE BP2 mice vaccinated as newborns. Vaccine. 19 (11), 1484–1495.

    Article  CAS  PubMed  Google Scholar 

  13. Platts-Mills T. A. 2012. Allergy in evolution. In: New Trends in Allergy and Atopic Eczema, vol. 96. Eds. Ring J., Darsow U., Behrendt H. Munich: Karger, pp. 1–6.

    Google Scholar 

  14. Jenkins J.A., Breiteneder H., Mills E.N.C. 2007. Evolutionary distance from human homologs reflects allergenicity of animal food proteins. J. Allergy Clin. Immun. 120 (6), 1399–1405.

    Article  CAS  PubMed  Google Scholar 

  15. Stadler M.B., Stadler B.M. 2003. Allergenicity prediction by protein sequence. Faseb J. 17 (9), 1141–1143.

    Article  CAS  PubMed  Google Scholar 

  16. Kong W., Tan T.S., Tham L., et al. 2007. Improved prediction of allergenicity by combination of multiple sequence motifs. In Silico Biol. 7 (1), 77–86.

    CAS  PubMed  Google Scholar 

  17. Li K.B., Issac P., Krishnan A. 2004. Predicting allergenic proteins using wavelet transform. Bioinformatics. 20 (16), 2572–2578.

    Article  CAS  PubMed  Google Scholar 

  18. Zorzet A., Gustafsson M., Hammerling U. 2002. Prediction of food protein allergenicity: A bio-informatic learning systems approach. In Silico Biol. 2 (4), 525–534.

    CAS  PubMed  Google Scholar 

  19. Saha S., Raghava G.P.S. 2006. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res. 34 (Suppl. 2), W202–W209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muh H.C., Tong J.C., Tammi M.T. 2009. AllerHunter: A SVM-pairwise system for assessment of allergenicity and allergic cross-reactivity in proteins. PLoS ONE. 4 (6), e5861.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dang H.X., Lawrence C.B. 2014. Allerdictor: Fast allergen prediction using text classification techniques. Bioinformatics. 30 (8), 1120–1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dimitrov I., Naneva L., Doytchinova I., et al. 2014. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics. 30 (6), 846–851.

    Article  CAS  PubMed  Google Scholar 

  23. Saravanan V., Lakshmi P.T.V. 2014. Fuzzy logic for personalized healthcare and diagnostics: FuzzyApp-A fuzzy logic based allergen-protein predictor. Omics: J. Integr. Biol. 18 (9), 570–581.

    Article  CAS  Google Scholar 

  24. Dimitrov I., Bangov I., Flower D.R., et al. 2014. Aller-TOP v. 2: A server for in silico prediction of allergens. J. Mol. Modeling. 20 (6), 1–6.

    CAS  Google Scholar 

  25. He Y., Tao A. 2015. Bioinformatics methods to predict allergen epitopes. In: Allergy Bioinformatics, vol. 8. Eds. Ailin T., Eyal R. Dordrecht: Springer, pp. 223–238.

    Chapter  Google Scholar 

  26. Bragin A.O., Demenkov P.S., Kolchanov N.A., et al. 2013. Accuracy of protein allergenicity prediction can be improved by taking into account data on allergenic protein discontinuous peptides. J. Biomol. Struct. Dyn. 31 (1), 59–64.

    Article  CAS  PubMed  Google Scholar 

  27. Barrett T., Clark K., Gevorgyan R., et al. 2012. Bio-Project and BioSample databases at NCBI: Facilitating capture and organization of metadata. Nucleic Acids Res. 40 (D1), D57–D63.

    Article  CAS  PubMed  Google Scholar 

  28. UniProt Consortium. 2014. UniProt: A hub for protein information. Nucleic Acids Res. gku989.

  29. Bragin A.O., Demenkov P.S., Tiys E.S., Hofestädt R., Ivanisenko V.A., et al. 2013. Computerized analysis of the relationship between allergenicity of microorganisms and their habitats. Russ. J. Gen.: Appl. Res. 3 (3), 171–175.

    Article  Google Scholar 

  30. Altschul S.F., Gish W., Miller W., et al. 1990. Basic local alignment search tool. J. Mol. Biol. 215 (3), 403–410.

    Article  CAS  PubMed  Google Scholar 

  31. Sokolov V.S., Zuraev B.S., Lashin S.A., et al. 2015. EloE: Web application for estimation of gene translation elongation efficiency. Russ. J. Gen. Appl. Res. 5 (4), 335–339.

    Article  CAS  Google Scholar 

  32. Sokolov V., Zuraev B., Lashin S., et al. 2015. Web application for automatic prediction of gene translation elongation efficiency. J. Integr. Bioinform. 12 (1), 16–23.

    Article  PubMed  Google Scholar 

  33. Vladimirov N.V., Likhoshvai V.A., Matushkin Y.G. 2007. Correlation of codon biases and potential secondary structures with mRNA translation efficiency in unicellular organisms. Mol. Biol. (Moscow). 41 (5), 843–850.

    Article  CAS  Google Scholar 

  34. Karlin S., Mrázek J. 2000. Predicted highly expressed genes of diverse prokaryotic genomes. J. Bacteriol. 182 (18), 5238–5250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Falsey A.R., Treanor J.J., Tornieporth N., et al. 2009. Randomized, double-blind controlled phase 3 trial comparing the immunogenicity of high-dose and standard-dose influenza vaccine in adults 65 years of age and older. J. Infect. Dis. 200 (2), 172–180.

    Article  CAS  PubMed  Google Scholar 

  36. Bertino J.S., Tirrell P., Greenberg R.N., et al. 1997. A comparative trial of standard or high-dose S subunit recombinant hepatitis B vaccine versus a vaccine containing S subunit, pre-S1, and pre-S2 particles for revaccination of healthy adult nonresponders. J. Infect. Dis. 175 (3), 678–681.

    Article  PubMed  Google Scholar 

  37. Strachan D.P. 1989. Hay fever, hygiene, and household size. Br. Med. J. 299 (6710), 1259–1260.

    Article  CAS  Google Scholar 

  38. Albers S.V. 2016. Extremophiles: Life at the deep end. Nature. 538 (7626), 457–457.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Bragin.

Additional information

Original Russian Text © A.O. Bragin, V.S. Sokolov, P.S. Demenkov, T.V. Ivanisenko, E.Yu. Bragina, Yu.G. Matushkin, V.A. Ivanisenko, 2018, published in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 2, pp. 326–332.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragin, A.O., Sokolov, V.S., Demenkov, P.S. et al. Prediction of Bacterial and Archaeal Allergenicity with AllPred Program. Mol Biol 52, 279–284 (2018). https://doi.org/10.1134/S0026893317050041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317050041

Keywords

Navigation