Skip to main content
Log in

Protein–protein interactions of huntingtin in the hippocampus

  • Structural and Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Huntingtin (HTT) occurs in the neuronal cytoplasm and can interact with structural elements of synapses. Huntington’s disease (HD) results from pathological expansion of a polyglutamine stretch in the HTT molecule, being probably associated with aberrant protein–protein interactions. The pathogenetic mechanism is still incompletely understood. Alterations of the synaptic structure and plasticity in the hippocampus are observed in early HD. The objective of the study was to theoretically evaluate the HTT contribution to changes in synaptic plasticity by integrating the available experimental data. HTT protein complexes are involved in maintaining the efficiency of synaptic transmission. A pathogenic HTT form (polyQ-HTT) probably disrupts the protein–protein interactions in distorts the dynamics of molecular processes in the synapsis. It was assumed that polyQ-HTT may compete with postsynaptic density proteins and proteins regulating cytoskeleton remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LTP:

long-term potentiation

AMPAR:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

HD:

Huntington’s disease

CME:

clathrin-mediated endocytosis

HTT:

huntingtin

AP2:

adaptor protein 2

HIP1:

huntingtininteracting protein 1

Pacsin1:

protein kinase C and casein kinase substrate in neurons protein 1

SH3G3:

SH3 domaincontaining GRB2-like protein 3

Dyn:

dynamin

ITSN1:

intersectin 1 (EH and SH3 domain protein 1

ArhGAP31:

Rho GTPase-activating protein 31

N-Was:

neural Wiskott–Aldrich syndrome protein

Hip1R:

Huntingtin-interacting protein 1-related protein

KIF5A:

kinesin heavy chain isoform 5A

Grip1:

AMPA receptor subunit–GluR2-interacting protein

GluR2:

GluRS subunit of AMPAR

HAP1:

HTT-associated protein 1

FRMPD4:

FERM and PDZ domain-containing protein 4

S-SCAM:

membrane-associated guanylate kinase, WW and PDZ domaincontaining protein 2

SHANK:

SH3 and multiple ankyrin repeat domains protein 1 (2, 3)

SP:

spectrin α chain, non-erythrocytic 1

DLG1:

Disks large homolog 1

KL:

Kalirin

α-Pix:

Rho guanine nucleotide exchange factor 6

β-Pix:

Rho guanine nucleotide exchange factor 7

DBNL:

Drebrin-like protein

BAIAP2:

brainspecific angiogenesis inhibitor 1-associated protein 2

Eph:

endophilin A3

References

  1. Kjelstrup K.B., Solstad T., Brun V.H., Hafting T., Leutgeb S., Witter M.P., Moser E.I., Moser M.B. 2008. Finite scale of spatial representation in the hippocampus. Science. 321, 140–143. doi 10.1126/science.1157086

    Article  CAS  PubMed  Google Scholar 

  2. Hawley D.F., Morch K., Christie B.R., Leasure J.L. 2012. Differential response of hippocampal subregions to stress and learning. PLoS ONE. 7, e53126.

    Article  Google Scholar 

  3. Bliss T.V., Collingridge G.L. 1993. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature. 361, 31–39.

    Article  CAS  PubMed  Google Scholar 

  4. Ananko E.A., Podkolodny N.L., Stepanenko I.L., Podkolodnaya O.A., Rasskazov D.A., Miginsky D.S., Likhoshvai V.A., Ratushny A.V., Podkolodnaya N.N., Kolchanov N.A. 2005. GeneNet in 2005. Nucleic Acids Res. 33, 425–427.

    Article  Google Scholar 

  5. Kolchanov N.A., Voevoda M.I., Kuznetsova T.N., Mordvinov V.A., Ignat’eva E.V. 2006. Gene networks of lipid metabolism. Byull. Sib. Otd. Ross. Akad. Med. Nauk. 2, 29–42.

    Google Scholar 

  6. Proskura A.L., Malakhin I.A., Turnaev I.I., Suslov V.V., Zapara T.A., Ratushnyak A.S. 2013. Intermolecular interactions in functional systems of neuron. Vavilov. Zh. Genet. Selekts. 17, 620–628.

    Google Scholar 

  7. Proskura A.L., Ratushnyak A.S., Zapara T.A. 2014. The protein–protein interaction networks of dendritic spines in the early phase of long-term potentiation. J. Comput. Sci. Syst. Biol. 7, 40–44.

    Article  Google Scholar 

  8. Park M., Penick E.C., Edwards J.G., Kauer J.A., Ehlers M.D. 2004. Recycling endosomes supply AMPA receptors for LTP. Science. 305, 1972–1975.

    Article  CAS  PubMed  Google Scholar 

  9. Newpher T.M., Ehlers M.D. 2008. Glutamate receptor dynamics in dendritic microdomains. Neuron. 58, 472–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shepherd J.D., Huganir R.L. 2007. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643.

    Article  CAS  PubMed  Google Scholar 

  11. Patterson M.A., Szatmari E.M., Yasuda R. 2010. AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner during long-term potentiation. Proc. Natl. Acad. Sci. U. S. A. 107, 15951–15956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tanaka H., Hirano T. 2012. Visualization of subunitspecific delivery of glutamate receptors to postsynaptic membrane during hippocampal long-term potentiation. Cell. Rep. 1, 291–298.

    Article  CAS  PubMed  Google Scholar 

  13. van der Sluijs P., Hoogenraad C.C. 2011. New insights in endosomal dynamics and AMPA receptor trafficking. Semin. Cell. Dev. Biol. 22, 499–505.

    Article  PubMed  Google Scholar 

  14. Malakhin I.A., Proskura A.L., Zapara T.A., Ratushnyak A.S. 2012. Effect of transport vesicles assembly to preserve the effectiveness of synaptic transmission. Vestn. Novosibirsk. Gos. Univ. 10, 14–20.

    Google Scholar 

  15. Folstein S.E., Folstein M.F. 1983. Psychiatric features of Huntington’s disease: Recent approaches and findings. Psychiatr. Dev. 1, 193–205.

    CAS  PubMed  Google Scholar 

  16. Cummings J.L., Cunningham K. 1992. Obsessivecompulsive disorder in Huntington’s disease. Biol. Psychiatry. 31, 263–270.

    Article  CAS  PubMed  Google Scholar 

  17. Rosenblatt A. 2007. Neuropsychiatry of Huntington’s disease. Dialogues Clin. Neurosci. 9, 191–197.

    PubMed  PubMed Central  Google Scholar 

  18. Julien C.L., Thompson J.C., Wild S., Yardumian P., Snowden J.S., Turner G., Craufurd D. 2007. Psychiatric disorders in preclinical Huntington’s disease. J. Neurol. Neurosurg. Psychiatry. 78, 939–943.

    Article  PubMed  Google Scholar 

  19. Cardoso F. 2009. Huntington disease and other choreas. Neurol. Clin. 27, 719–736.

    Article  PubMed  Google Scholar 

  20. Schilling G., Sharp A.H., Loev S.J., Wagster M.V., Li S.H., Stine O.C., Ross C.A. 1995. Expression of the Huntington’s disease (IT15) protein product in HDpatients. Hum. Mol. Genet. 4, 1365–1371.

    Article  CAS  PubMed  Google Scholar 

  21. Mangiarini L., Sathasivam K., Seller M., Cozens B., Harper A., Hetherington C., Lawton M., Trottier Y., Lehrach H., Davies S.W., Bates G.P. 1996. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 87, 493–506.

    Article  CAS  PubMed  Google Scholar 

  22. Sapp E., Schwarz C., Chase K., Bhide P.G., Young A.B., Penney J., Vonsattel J.P., Aronin N., DiFiglia M. 1997. Huntingtin localization in brains of normal and Huntington’s disease patients. Ann. Neurol. 42, 604–612.

    Article  CAS  PubMed  Google Scholar 

  23. Korzhova V.V., Artamonov D.N., Vlasova O.L., Becprozvannyi I.B. 2014. Huntington’s disease: Molecular and cellular bases of pathology. Zh. Vyssh. Nervn. Deyat. 64, 359–375.

    CAS  Google Scholar 

  24. Li X.J., Li S.H., Sharp A.H., Nucifora F.C., Schilling G., Lanahan A., Worley P., Snyder S.H., Ross C.A. 1995. A huntingtin-associated protein enriched in brain with implications for pathology. Nature. 378, 398–402.

    Article  CAS  PubMed  Google Scholar 

  25. Gómez-Tortosa E., MacDonald M.E., Friend J.C., Taylor S.A., Weiler L.J., Cupples L.A., Srinidhi J., Gusella J.F., Bird E.D., Vonsattel J.P., Myers R.H. 2001. Quantitative neuropathological changes in presymptomatic Huntington’s disease. Ann. Neurol. 49, 29–34.

    Article  PubMed  Google Scholar 

  26. Zuccato C., Valenza M., Cattaneo E. 2010. Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol. Rev. 90, 905–981. doi 10.1152/physrev.00041.2009

    Article  CAS  PubMed  Google Scholar 

  27. Murphy K.P., Carter R.J., Lione L.A., Mangiarini L., Mahal A., Bates G.P., Dunnett S.B., Morton A.J. 2000. Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington’s disease mutation. J. Neurosci. 20, 5115–5123.

    CAS  PubMed  Google Scholar 

  28. Milnerwood A.J., Cummings D.M., Dallérac G.M., Brown J.Y., Vatsavayai S.C., Hirst M.C., Rezaie P., Murphy K.P. 2006. Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Hum. Mol. Genet. 15, 1690–1703.

    Article  CAS  PubMed  Google Scholar 

  29. Ciamei A., Morton A.J. 2009. Progressive imbalance in the interaction between spatial and procedural memory systems in the R6/2 mouse model of Huntington’s disease. Neurobiol. Learn. Mem. 92, 417–428. doi 10.1016/j.nlm.2009.06.002

    Article  PubMed  Google Scholar 

  30. Dallérac G.M., Cummings D.M., Hirst M.C., Milnerwood A.J., Murphy K.P. 2016. Changes in dopamine signalling do not underlie aberrant hippocampal plasticity in a mouse model of Huntington’s disease. Neuromol. Med. 18, 146–153.

    Article  Google Scholar 

  31. Cattaneo E. 2003. Dysfunction of wild-type huntingtin in Huntington disease. News Physiol. Sci. 18, 34–37.

    CAS  PubMed  Google Scholar 

  32. Van Raamsdonk J.M., Pearson J, Rogers D.A., Bissada N., Vogl A.W., Hayden M.R., Leavitt B.R. 2005. Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 14, 1379–1392.

    Article  PubMed  Google Scholar 

  33. Ehlers M.D. 2000. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron. 28, 511–525.

    Article  CAS  PubMed  Google Scholar 

  34. Tardin C., Cognet L., Bats C., Lounis B., Choquet D. 2003. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22, 4656–4665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Man H.Y., Ju W., Ahmadian G., Wang Y.T. 2000. Intracellular trafficking of AMPA receptors in synaptic plasticity. Cell Mol. Life Sci. 57, 1526–1534.

    Article  CAS  PubMed  Google Scholar 

  36. Petrini E.M., Lu J., Cognet L., Lounis B., Ehlers M.D., Choquet D. 2009. Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron. 63, 92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalchman M.A., Koide H.B., McCutcheon K., Graham R.K., Nichol K., Nishiyama K., Kazemi-Esfarjani P., Lynn F.C., Wellington C., Metzler M., Goldberg Y.P., Kanazawa I., Gietz R.D., Hayden M.R. 1997. HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat. Genet. 16, 44–53.

    Article  CAS  PubMed  Google Scholar 

  38. Mishra S.K., Agostinelli N.R., Brett T.J., Mizukami I., Ross T.S., Traub L.M. 2001. Clathrin- and AP-2-binding sites in HIP1 uncover a general assembly role for endocytic accessory proteins. J. Biol. Chem. 276, 46230–46236.

    Article  CAS  PubMed  Google Scholar 

  39. Waelter S., Scherzinger E., Hasenbank R., Nordhoff E., Lurz R., Goehler H., Gauss C., Sathasivam K., Bates G.P., Lehrach H., Wanker E.E. 2001. The huntingtin interacting protein HIP1 is a clathrin and alpha-adaptinbinding protein involved in receptor-mediated endocytosis. Hum Mol Genet. 10, 1807–1817.

    Article  CAS  PubMed  Google Scholar 

  40. Metzler M., Legendre-Guillemin V., Gan L., Chopra V., Kwok A., McPherson P.S., Hayden M.R. 2001. HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2. J. Biol. Chem. 276, 39271–39276.

    Article  CAS  PubMed  Google Scholar 

  41. Yao P.J., Bushlin I., Petralia R.S. 2006. Partially overlapping distribution of epsin1 and HIP1 at the synapse: Analysis by immunoelectron microscopy. J. Comp. Neurol. 494, 368–379.

    Article  CAS  PubMed  Google Scholar 

  42. Metzler M., Li B., Gan L., Georgiou J., Gutekunst C.A., Wang Y., Torre E., Devon R.S., Oh R., Legendre-Guillemin V., Rich M., Alvarez C., Gertsenstein M., McPherson P.S., Nagy A., et al. 2003. Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking. EMBO J. 22, 3254–3266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Legendre-Guillemin V., Metzler M., Charbonneau M., Gan L., Chopra V., Philie J., Hayden M.R., McPherson P.S. 2002. HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain. J. Biol. Chem. 277, 19897–19904.

    CAS  PubMed  Google Scholar 

  44. Wilbur J.D., Chen C.Y., Manalo V., Hwang P.K., Fletterick R.J., Brodsky F.M. 2008. Actin binding by Hip1 (huntingtin-interacting protein 1. and Hip1R (Hip1- related protein) is regulated by clathrin light chain. J. Biol. Chem. 283, 32870–32879.

    CAS  PubMed  Google Scholar 

  45. Wilbur J.D., Hwang P.K., Brodsky F.M., Fletterick R.J. 2010. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain. Acta Crystallogr. D: Biol. Crystallogr. 66, 314–318.

    Article  CAS  Google Scholar 

  46. Hussain N.K., Jenna S., Glogauer M., Quinn C.C., Wasiak S., Guipponi M., Antonarakis S.E., Kay B.K., Stossel T.P., Lamarche-Vane N., McPherson P.S. 2001. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat. Cell Biol. 3, 927–932.

    Article  CAS  PubMed  Google Scholar 

  47. Modregger J., DiProspero N.A., Charles V., Tagle D.A., Plomann M. 2002. PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic Huntington’s disease brains. Hum. Mol. Genet. 11, 2547–2558.

    Article  CAS  PubMed  Google Scholar 

  48. Kessels M.M., Qualmann B. 2004. The syndapin protein family: Linking membrane trafficking with the cytoskeleton. J. Cell Sci. 117, 3077–3086.

    Article  CAS  PubMed  Google Scholar 

  49. Goh S.L., Wang Q., Byrnes L.J., Sondermann H. 2012. Versatile membrane deformation potential of activated pacsin. PLoS ONE. 7, e51628. doi 10.1371/journal. pone.0051628

    Article  Google Scholar 

  50. Quan A., Robinson P.J. 2013. Syndapin, a membrane remodelling and endocytic F-BAR protein. FEBS J. 280, 5198–5212.

    Article  CAS  PubMed  Google Scholar 

  51. Sittler A., Wä lter S., Wedemeyer N., Hasenbank R., Scherzinger E., Eickhoff H., Bates G.P., Lehrach H., Wanker E.E. 1998. SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol. Cell. 2, 427–436.

    Article  CAS  PubMed  Google Scholar 

  52. Milosevic I., Giovedi S., Lou X., Raimondi A., Collesi C., Shen H., Paradise S., O’Toole E., Ferguson S., Cremona O., de Camilli P. 2011. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron. 72, 587–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Setou M., Seog D.H., Tanaka Y., Kanai Y., Takei Y., Kawagishi M., Hirokawa N. 2002. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature. 417, 83–87.

    Article  CAS  PubMed  Google Scholar 

  54. Li S.H., Li H., Torre E.R., Li X.J. 2000. Expression of huntingtin-associated protein-1 in neuronal cells implicates a role in neuritic growth. Mol. Cell Neurosci. 16, 168–183.

    Article  CAS  PubMed  Google Scholar 

  55. Rong J., McGuire J.R., Fang Z.H., Sheng G., Shin J.Y., Li S.H., Li. J. 2006. Regulation of intracellular trafficking of huntingtin-associated protein-1 is critical for TrkA protein levels and neurite outgrowth. J. Neurosci. 26, 6019–6030.

    Article  CAS  PubMed  Google Scholar 

  56. Ma B., Savas J.N., Yu M.S., Culver B.P., Chao M.V., Tanese N. 2011. Huntingtin mediates dendritic transport of β-actin mRNA in rat neurons. Sci Rep. 1, 140. doi 10.1038/srep00140

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mandal M., Wei J., Zhong P., Cheng J., Duffney L.J., Liu W., Yuen E.Y., Twelvetrees A.E., Li S., Li X.J., Kittler J.T., Yan Z. 2011. Impaired alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking and function by mutant huntingtin. J. Biol. Chem. 286, 33719–33728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qualmann B., Kelly R.B. 2000. Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J. Cell Biol. 148, 1047–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Loebrich S. 2014. The role of F-actin in modulating clathrin-mediated endocytosis: Lessons from neurons in health and neuropsychiatric disorder. Commun. Integr. Biol. 7, e28740. doi 10.4161/cib.28740

    Article  Google Scholar 

  60. Wegner A.M., Nebhan C.A., Hu L., Majumdar D., Meier K.M., Weaver A.M., Webb D.J. 2008. N-Wasp and the arp2/3 complex are critical regulators of actin in the development of dendritic spines and synapses. J. Biol. Chem. 283, 15912–15920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Imarisio S., Carmichael J., Korolchuk V., Chen C.W., Saiki S., Rose C., Krishna G., Davies J.E., Ttofi E., Underwood B.R., Rubinsztein D.C. 2008. Huntington’s disease: From pathology and genetics to potential therapies. Biochem. J. 412, 191–209.

    Article  CAS  PubMed  Google Scholar 

  62. Li X.J., Li S.H., Sharp A.H., Nucifora F.C., Schilling G., Lanahan A., Worley P., Snyder S.H., Ross C.A. 1995. A huntingtin-associated protein enriched in brain with implications for pathology. Nature. 378, 398–402.

    Article  CAS  PubMed  Google Scholar 

  63. Li S.H., Hosseini S.H., Gutekunst C.A., Hersch S.M., Ferrante R.J., Li X.J. 1998. A human HAP1 homologue. Cloning, expression, and interaction with huntingtin. J. Biol. Chem. 273, 19220–19227.

    CAS  PubMed  Google Scholar 

  64. Nasir J., Duan K., Nichol K., Engelender S., Ashworth R., Colomer V., Thomas S., Disteche C.M., Hayden M.R., Ross C.A. 1998. Gene structure and map location of the murine homolog of the Huntington-associated protein, Hap1. Mamm. Genome. 9, 565–570.

    Article  CAS  PubMed  Google Scholar 

  65. Nasir J., Lafuente M.J., Duan K., Colomer V., Engelender S., Ingersoll R., Margolis R.L., Ross C.A., Hayden M.R. 2000. Human huntingtin-associated protein (HAP-1) gene: Genomic organisation and an intragenic polymorphism. Gene. 254, 181–187.

    Article  CAS  PubMed  Google Scholar 

  66. Dragatsis I, Dietrich P, Zeitlin S. 2000. Expression of the Huntingtin-associated protein 1 gene in the developing and adult mouse. Neurosci. Lett. 282, 37–40.

    Article  CAS  PubMed  Google Scholar 

  67. Truant R., Atwal R., Burtnik A. 2006. Hypothesis: Huntingtin may function in membrane association and vesicular trafficking. Biochem Cell Biol. 84, 912–917.

    Article  CAS  PubMed  Google Scholar 

  68. Colin E., Zala D., Liot G., Rangone H., Borrell-Pagès M., Li X.J., Saudou F., Humbert S. 2008. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J. 27, 2124–2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hirokawa N., Noda Y., Tanaka Y., Niwa S. 2009. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682–696.

    Article  CAS  PubMed  Google Scholar 

  70. Zala D., Colin E., Rangone H., Liot G., Humbert S., Saudou F. 2008. Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons. Hum. Mol. Genet. 17, 3837–3846. doi 10.1093/hmg/ddn281

    Article  CAS  PubMed  Google Scholar 

  71. Chowdhury S., Shepherd J.D., Okuno H., Lyford G., Petralia R.S., Plath N., Kuhl D., Huganir R.L., Worley P.F. 2006. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron. 52, 445–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gao Y.G., Yan X.Z., Song A.X., Chang Y.G., Gao X.C., Jiang N., Zhang Q., Hu H.Y. 2006. Structural insights into the specific binding of huntingtin proline-rich region with the SH3 and WW domains. Structure. 14, 1755–1765.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Proskura.

Additional information

Original Russian Text © A.L. Proskura, S.O. Vechkapova, T.A. Zapara, A.S. Ratushniak, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 4, pp. 734–742.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proskura, A.L., Vechkapova, S.O., Zapara, T.A. et al. Protein–protein interactions of huntingtin in the hippocampus. Mol Biol 51, 647–653 (2017). https://doi.org/10.1134/S002689331704015X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331704015X

Keywords

Navigation