Skip to main content
Log in

Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin (Htt) protein. Mutant Htt causes synaptic transmission dysfunctions by interfering in the expression of synaptic proteins, leading to early HD symptoms. Synaptic vesicle proteins 2 (SV2s), a family of synaptic vesicle proteins including 3 members, SV2A, SV2B, and SV2C, plays important roles in synaptic physiology. Here, we investigated whether the expression of SV2s is affected by mutant Htt in the brains of HD transgenic (TG) mice and Neuro2a mouse neuroblastoma cells (N2a cells) expressing mutant Htt. Western blot analysis showed that the protein levels of SV2A and SV2B were not significantly changed in the brains of HD TG mice expressing mutant Htt with 82 glutamine repeats. However, in the TG mouse brain there was a dramatic decrease in the protein level of SV2C, which has a restricted distribution pattern in regions particularly vulnerable in HD. Immunostaining revealed that the immunoreactivity of SV2C was progressively weakened in the basal ganglia and hippocampus of TG mice. RT-PCR demonstrated that the mRNA level of SV2C progressively declined in the TG mouse brain without detectable changes in the mRNA levels of SV2A and SV2B, indicating that mutant Htt selectively inhibits the transcriptional expression of SV2C. Furthermore, we found that only SV2C expression was progressively inhibited in N2a cells expressing a mutant Htt containing 120 glutamine repeats. These findings suggest that the synaptic dysfunction in HD results from the mutant Htt-mediated inhibition of SV2C transcriptional expression. These data also imply that the restricted distribution and decreased expression of SV2C contribute to the brain region-selective pathology of HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993, 72: 971–983.

    Article  Google Scholar 

  2. Novak MJ, Tabrizi SJ. Huntington’s disease. BMJ 2010, 340: c3109.

    Article  PubMed  Google Scholar 

  3. Li HL, Zhang YB, Wu ZY. Development of research on Huntington disease in China. Neurosci Bull 2017, 33: 312–316.

    Article  PubMed  Google Scholar 

  4. Du Z, Chazalon M, Bestaven E, Leste-Lasserre T, Baufreton J, Cazalets JR, et al. Early GABAergic transmission defects in the external globus pallidus and rest/activity rhythm alteration in a mouse model of Huntington’s disease. Neuroscience 2016, 329: 363–379.

    Article  PubMed  CAS  Google Scholar 

  5. Atherton JF, McIver EL, Mullen MR, Wokosin DL, Surmeier DJ, Bevan MD. Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington’s disease. Elife 2016, 5: e21616.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Raymond LA, Andre VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS. Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function. Neuroscience 2011, 198: 252–273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gos T, Krell D, Bielau H, Steiner J, Trubner K, Brisch R, et al. Demonstration of disturbed activity of external globus pallidus projecting neurons in depressed patients by the AgNOR staining method. J Affect Disord 2009, 119: 149–155.

    Article  PubMed  Google Scholar 

  8. Hegeman DJ, Hong ES, Hernandez VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016, 43: 1239–1265.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gittis AH, Berke JD, Bevan MD, Chan CS, Mallet N, Morrow MM, et al. New roles for the external globus pallidus in basal ganglia circuits and behavior. J Neurosci 2014, 34: 15178–15183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Jaeger D, Kita H. Functional connectivity and integrative properties of globus pallidus neurons. Neuroscience 2011, 198: 44–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gunaydin LA, Kreitzer AC. Cortico-basal ganglia circuit function in psychiatric disease. Annu Rev Physiol 2016, 78: 327–350.

    Article  PubMed  CAS  Google Scholar 

  12. Sizemore RJ, Seeger-Armbruster S, Hughes SM, Parr-Brownlie LC. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology. J Neurophysiol 2016, 115: 2124–2146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lehericy S, Bardinet E, Poupon C, Vidailhet M, Francois C. 7 Tesla magnetic resonance imaging: a closer look at substantia nigra anatomy in Parkinson’s disease. Mov Disord 2014, 29: 1574–1581.

    Article  PubMed  CAS  Google Scholar 

  14. Glass M, Dragunow M, Faull RL. The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 2000, 97: 505–519.

    Article  PubMed  CAS  Google Scholar 

  15. Pancani T, Foster DJ, Moehle MS, Bichell TJ, Bradley E, Bridges TM, et al. Allosteric activation of M4 muscarinic receptors improve behavioral and physiological alterations in early symptomatic YAC128 mice. Proc Natl Acad Sci U S A 2015, 112: 14078–14083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Walker FO. Huntington’s disease. Lancet 2007, 369: 218–228.

    Article  PubMed  CAS  Google Scholar 

  17. Milnerwood AJ, Raymond LA. Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci 2010, 33: 513–523.

    Article  PubMed  CAS  Google Scholar 

  18. Paulsen JS. Cognitive impairment in Huntington disease: diagnosis and treatment. Curr Neurol Neurosci Rep 2011, 11: 474–483.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Morreale MK. Huntington’s disease: looking beyond the movement disorder. Adv Psychosom Med 2015, 34: 135–142.

    Article  PubMed  Google Scholar 

  20. Paulsen JS, Long JD. Onset of Huntington’s disease: can it be purely cognitive? Mov Disord 2014, 29: 1342–1350.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marttinen M, Kurkinen KM, Soininen H, Haapasalo A, Hiltunen M. Synaptic dysfunction and septin protein family members in neurodegenerative diseases. Mol Neurodegener 2015, 10: 16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Calabresi P, Picconi B, Tozzi A, Ghiglieri V. Interaction between basal ganglia and limbic circuits in learning and memory processes. Parkinsonism Relat Disord 2016, 22 Suppl 1: S65–68.

    Article  PubMed  Google Scholar 

  23. Rubin RD, Watson PD, Duff MC, Cohen NJ. The role of the hippocampus in flexible cognition and social behavior. Front Hum Neurosci 2014, 8: 742.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cotterill RM. Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: possible implications for cognition, consciousness, intelligence and creativity. Prog Neurobiol 2001, 64: 1–33.

    Article  PubMed  CAS  Google Scholar 

  25. Begeti F, Schwab LC, Mason SL, Barker RA. Hippocampal dysfunction defines disease onset in Huntington’s disease. J Neurol Neurosurg Psychiatry 2016, 87: 975–981.

    Article  PubMed  Google Scholar 

  26. Brito V, Gines S. p75NTR in Huntington’s disease: beyond the basal ganglia. Oncotarget 2016, 7: 1–2.

    Article  PubMed  Google Scholar 

  27. Brito V, Giralt A, Enriquez-Barreto L, Puigdellivol M, Suelves N, Zamora-Moratalla A, et al. Neurotrophin receptor p75(NTR) mediates Huntington’s disease-associated synaptic and memory dysfunction. J Clin Invest 2014, 124: 4411–4428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Manczak M, Reddy PH. Mitochondrial division inhibitor 1 protects against mutant huntingtin-induced abnormal mitochondrial dynamics and neuronal damage in Huntington’s disease. Hum Mol Genet 2015, 24: 7308–7325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Smith GA, Rocha EM, McLean JR, Hayes MA, Izen SC, Isacson O, et al. Progressive axonal transport and synaptic protein changes correlate with behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of Huntington’s disease. Hum Mol Genet 2014, 23: 4510–4527.

    Article  PubMed  CAS  Google Scholar 

  30. Rozas JL, Gomez-Sanchez L, Tomas-Zapico C, Lucas JJ, Fernandez-Chacon R. Presynaptic dysfunction in Huntington’s disease. Biochem Soc Trans 2010, 38: 488–492.

    Article  PubMed  CAS  Google Scholar 

  31. Nowack A, Yao J, Custer KL, Bajjalieh SM. SV2 regulates neurotransmitter release via multiple mechanisms. Am J Physiol Cell Physiol 2010, 299: C960–967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Shin OH. Exocytosis and synaptic vesicle function. Compr Physiol 2014, 4: 149–175.

    Article  PubMed  Google Scholar 

  33. Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 1999, 8: 397–407.

    Article  PubMed  CAS  Google Scholar 

  34. Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 1981, 29: 577–580.

    Article  PubMed  CAS  Google Scholar 

  35. Liao M, Chen X, Han J, Yang S, Peng T, Li H. Selective expression of Huntingtin-associated protein 1 in β-cells of the rat pancreatic islets. J Histochem Cytochem 2010, 58: 255–263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cregger M, Berger AJ, Rimm DL. Immunohistochemistry and quantitative analysis of protein expression. Arch Pathol Lab Med 2006, 130: 1026–1030.

    PubMed  CAS  Google Scholar 

  37. Wang CJ, Zhou ZG, Holmqvist A, Zhang H, Li Y, Adell G, et al. Survivin expression quantified by Image Pro-Plus compared with visual assessment. Appl Immunohistochem Mol Morphol 2009, 17: 530–535.

    Article  PubMed  CAS  Google Scholar 

  38. Cha JH. Transcriptional dysregulation in Huntington’s disease. Trends Neurosci 2000, 23: 387–392.

    Article  PubMed  CAS  Google Scholar 

  39. Valor LM. Transcription, epigenetics and ameliorative strategies in Huntington’s Disease: a genome-wide perspective. Mol Neurobiol 2015, 51: 406–423.

    Article  PubMed  CAS  Google Scholar 

  40. van Hagen M, Piebes DGE, de Leeuw WC, Vuist IM, van Roon-Mom WMC, Moerland PD, et al. The dynamics of early-state transcriptional changes and aggregate formation in a Huntington’s disease cell model. BMC Genomics 2017, 18: 373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Yu-Taeger L, Bonin M, Stricker-Shaver J, Riess O, Nguyen HH. Dysregulation of gene expression in the striatum of BACHD rats expressing full-length mutant huntingtin and associated abnormalities on molecular and protein levels. Neuropharmacology 2017, 117: 260–272.

    Article  PubMed  CAS  Google Scholar 

  42. Bowles KR, Stone T, Holmans P, Allen ND, Dunnett SB, Jones L. SMAD transcription factors are altered in cell models of HD and regulate HTT expression. Cell Signal 2017, 31: 1–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lin L, Park JW, Ramachandran S, Zhang Y, Tseng YT, Shen S, et al. Transcriptome sequencing reveals aberrant alternative splicing in Huntington’s disease. Hum Mol Genet 2016, 25: 3454–3466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Langfelder P, Cantle JP, Chatzopoulou D, Wang N, Gao F, Al-Ramahi I, et al. Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat Neurosci 2016, 19: 623–633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Moumne L, Betuing S, Caboche J. Multiple aspects of gene dysregulation in Huntington’s disease. Front Neurol 2013, 4: 127.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Potter MC, Yuan C, Ottenritter C, Mughal M, van Praag H. Exercise is not beneficial and may accelerate symptom onset in a mouse model of Huntington’s disease. PLoS Curr 2010, 2: RRN1201.

  47. Cheng Y, Peng Q, Hou Z, Aggarwal M, Zhang J, Mori S, et al. Structural MRI detects progressive regional brain atrophy and neuroprotective effects in N171-82Q Huntington’s disease mouse model. Neuroimage 2011, 56: 1027–1034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wang CE, Tydlacka S, Orr AL, Yang SH, Graham RK, Hayden MR, et al. Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington’s disease. Hum Mol Genet 2008, 17: 2738–2751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Jin J, Cheng Y, Zhang Y, Wood W, Peng Q, Hutchison E, et al. Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. J Neurochem 2012, 123: 477–490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ferrante RJ. Mouse models of Huntington’s disease and methodological considerations for therapeutic trials. Biochim Biophys Acta 2009, 1792: 506–520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Janz R, Sudhof TC. SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family. Neuroscience 1999, 94: 1279–1290.

    Article  PubMed  CAS  Google Scholar 

  52. Dardou D, Dassesse D, Cuvelier L, Deprez T, De Ryck M, Schiffmann SN. Distribution of SV2C mRNA and protein expression in the mouse brain with a particular emphasis on the basal ganglia system. Brain Res 2011, 1367: 130–145.

    Article  PubMed  CAS  Google Scholar 

  53. Dunn AR, Hoffman CA, Stout KA, Ozawa M, Dhamsania RK, Miller GW. Immunochemical analysis of the expression of SV2C in mouse, macaque and human brain. Brain Res 2017. https://doi.org/10.1016/j.brainres.2017.12.029.

    Article  PubMed  Google Scholar 

  54. McBride JL, Ramaswamy S, Gasmi M, Bartus RT, Herzog CD, Brandon EP, et al. Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 2006, 103: 9345–9350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kolodziejczyk K, Parsons MP, Southwell AL, Hayden MR, Raymond LA. Striatal synaptic dysfunction and hippocampal plasticity deficits in the Hu97/18 mouse model of Huntington disease. PLoS One 2014, 9: e94562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yu ZX, Li SH, Evans J, Pillarisetti A, Li H, Li XJ. Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington’s disease. J Neurosci 2003, 23: 2193–2202.

    Article  PubMed  CAS  Google Scholar 

  57. Ramaswamy S, McBride JL, Kordower JH. Animal models of Huntington’s disease. ILAR J 2007, 48: 356–373.

    Article  PubMed  CAS  Google Scholar 

  58. Heng MY, Detloff PJ, Albin RL. Rodent genetic models of Huntington disease. Neurobiol Dis 2008, 32: 1–9.

    Article  PubMed  CAS  Google Scholar 

  59. Maier T, Guell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett 2009, 583: 3966–3973.

    Article  PubMed  CAS  Google Scholar 

  60. Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep 2015, 5: 10775.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cisbani G, Cicchetti F. An in vitro perspective on the molecular mechanisms underlying mutant huntingtin protein toxicity. Cell Death Dis 2012, 3: e382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Schlachetzki JC, Saliba SW, Oliveira AC. Studying neurodegenerative diseases in culture models. Rev Bras Psiquiatr 2013, 35 Suppl 2: S92–100.

    Article  PubMed  Google Scholar 

  63. Reiner A, Dragatsis I, Dietrich P. Genetics and neuropathology of Huntington’s disease. Int Rev Neurobiol 2011, 98: 325–372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Smith R, Brundin P, Li JY. Synaptic dysfunction in Huntington’s disease: a new perspective. Cell Mol Life Sci 2005, 62: 1901–1912.

    Article  PubMed  CAS  Google Scholar 

  65. Li JY, Plomann M, Brundin P. Huntington’s disease: a synaptopathy? Trends Mol Med 2003, 9: 414–420.

    Article  PubMed  CAS  Google Scholar 

  66. Sepers MD, Raymond LA. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington’s disease. Drug Discov Today 2014, 19: 990–996.

    Article  PubMed  CAS  Google Scholar 

  67. Murmu RP, Li W, Szepesi Z, Li JY. Altered sensory experience exacerbates stable dendritic spine and synapse loss in a mouse model of Huntington’s disease. J Neurosci 2015, 35: 287–298.

    Article  PubMed  CAS  Google Scholar 

  68. Puigdellivol M, Saavedra A, Perez-Navarro E. Cognitive dysfunction in Huntington’s disease: mechanisms and therapeutic strategies beyond BDNF. Brain Pathol 2016, 26: 752–771.

    Article  PubMed  CAS  Google Scholar 

  69. Raymond LA. Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. Biochem Biophys Res Commun 2017, 483: 1051–1062.

    Article  PubMed  CAS  Google Scholar 

  70. Nithianantharajah J, Hannan AJ. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington’s disease. Neuroscience 2013, 251: 66–74.

    Article  PubMed  CAS  Google Scholar 

  71. Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington’s disease. Prog Neurobiol 2017, 153: 18–45.

    Article  PubMed  CAS  Google Scholar 

  72. Silva FR, Miranda AS, Santos RPM, Olmo IG, Zamponi GW, Dobransky T, et al. N-type Ca(2+) channels are affected by full-length mutant huntingtin expression in a mouse model of Huntington’s disease. Neurobiol Aging 2017, 55: 1–10.

    Article  PubMed  CAS  Google Scholar 

  73. Hachigian LJ, Carmona V, Fenster RJ, Kulicke R, Heilbut A, Sittler A, et al. Control of Huntington’s disease-associated phenotypes by the striatum-enriched transcription factor Foxp2. Cell Rep 2017, 21: 2688–2695.

    Article  PubMed  CAS  Google Scholar 

  74. Montoya A, Price BH, Menear M, Lepage M. Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci 2006, 31: 21–29.

    PubMed  PubMed Central  Google Scholar 

  75. Buren C, Parsons MP, Smith-Dijak A, Raymond LA. Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington’s disease. Neurobiol Dis 2016, 87: 80–90.

    Article  PubMed  CAS  Google Scholar 

  76. Wolf RC, Sambataro F, Vasic N, Schonfeldt-Lecuona C, Ecker D, Landwehrmeyer B. Altered frontostriatal coupling in pre-manifest Huntington’s disease: effects of increasing cognitive load. Eur J Neurol 2008, 15: 1180–1190.

    Article  PubMed  CAS  Google Scholar 

  77. Lawrence AD, Hodges JR, Rosser AE, Kershaw A, Ffrench-Constant C, Rubinsztein DC, et al. Evidence for specific cognitive deficits in preclinical Huntington’s disease. Brain 1998, 121 (Pt 7): 1329–1341.

    Article  PubMed  Google Scholar 

  78. Rangel-Barajas C, Rebec GV. Dysregulation of corticostriatal connectivity in Huntington’s disease: a role for dopamine modulation. J Huntingtons Dis 2016, 5: 303–331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Wikenheiser AM, Schoenbaum G. Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex. Nat Rev Neurosci 2016, 17: 513–523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Anglada-Huguet M, Vidal-Sancho L, Giralt A, Garcia-Diaz Barriga G, Xifro X, Alberch J. Prostaglandin E2 EP2 activation reduces memory decline in R6/1 mouse model of Huntington’s disease by the induction of BDNF-dependent synaptic plasticity. Neurobiol Dis 2016, 95: 22–34.

    Article  PubMed  CAS  Google Scholar 

  81. Miguez A, Garcia-Diaz Barriga G, Brito V, Straccia M, Giralt A, Gines S, et al. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington’s disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation. Hum Mol Genet 2015, 24: 4958–4970.

    Article  PubMed  CAS  Google Scholar 

  82. Ghilan M, Bostrom CA, Hryciw BN, Simpson JM, Christie BR, Gil-Mohapel J. YAC128 Huntington’s disease transgenic mice show enhanced short-term hippocampal synaptic plasticity early in the course of the disease. Brain Res 2014, 1581: 117–128.

    Article  PubMed  CAS  Google Scholar 

  83. Dallerac GM, Cummings DM, Hirst MC, Milnerwood AJ, Murphy KP. Changes in dopamine signalling do not underlie aberrant hippocampal plasticity in a mouse model of Huntington’s disease. Neuromolecular Med 2016, 18: 146–153.

    Article  PubMed  CAS  Google Scholar 

  84. Loscher W, Gillard M, Sands ZA, Kaminski RM, Klitgaard H. Synaptic vesicle glycoprotein 2a ligands in the treatment of epilepsy and beyond. CNS Drugs 2016, 30: 1055–1077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wan QF, Zhou ZY, Thakur P, Vila A, Sherry DM, Janz R, et al. SV2 acts via presynaptic calcium to regulate neurotransmitter release. Neuron 2010, 66: 884–895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Jia H, Wang Y, Morris CD, Jacques V, Gottesfeld JM, Rusche JR, et al. The effects of pharmacological inhibition of histone deacetylase 3 (HDAC3) in Huntington’s disease mice. PLoS One 2016, 11: e0152498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Damiano M, Diguet E, Malgorn C, D’Aurelio M, Galvan L, Petit F, et al. A role of mitochondrial complex II defects in genetic models of Huntington’s disease expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet 2013, 22: 3869–3882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Bajjalieh SM, Frantz GD, Weimann JM, McConnell SK, Scheller RH. Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci 1994, 14: 5223–5235.

    Article  PubMed  CAS  Google Scholar 

  89. Crevecoeur J, Foerch P, Doupagne M, Thielen C, Vandenplas C, Moonen G, et al. Expression of SV2 isoforms during rodent brain development. BMC Neurosci 2013, 14: 87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Morton AJ, Edwardson JM. Progressive depletion of complexin II in a transgenic mouse model of Huntington’s disease. J Neurochem 2001, 76: 166–172.

    Article  PubMed  CAS  Google Scholar 

  91. Morton AJ, Faull RL, Edwardson JM. Abnormalities in the synaptic vesicle fusion machinery in Huntington’s disease. Brain Res Bull 2001, 56: 111–117.

    Article  PubMed  CAS  Google Scholar 

  92. Smith R, Petersen A, Bates GP, Brundin P, Li JY. Depletion of rabphilin 3A in a transgenic mouse model (R6/1) of Huntington’s disease, a possible culprit in synaptic dysfunction. Neurobiol Dis 2005, 20: 673–684.

    Article  PubMed  CAS  Google Scholar 

  93. Poirier MA, Jiang H, Ross CA. A structure-based analysis of huntingtin mutant polyglutamine aggregation and toxicity: evidence for a compact beta-sheet structure. Hum Mol Genet 2005, 14: 765–774.

    Article  PubMed  CAS  Google Scholar 

  94. Glajch KE, Sadri-Vakili G. Epigenetic mechanisms involved in Huntington’s disease pathogenesis. J Huntingtons Dis 2015, 4: 1–15.

    PubMed  CAS  Google Scholar 

  95. Kumar A, Vaish M, Ratan RR. Transcriptional dysregulation in Huntington’s disease: a failure of adaptive transcriptional homeostasis. Drug Discov Today 2014, 19: 956–962.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Kazantsev AG, Hersch SM. Drug targeting of dysregulated transcription in Huntington’s disease. Prog Neurobiol 2007, 83: 249–259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Sari Y. Huntington’s disease: from mutant Huntingtin protein to neurotrophic factor therapy. Int J Biomed Sci 2011, 7: 89–100.

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Sugars KL, Rubinsztein DC. Transcriptional abnormalities in Huntington disease. Trends Genet 2003, 19: 233–238.

    Article  PubMed  CAS  Google Scholar 

  99. Shimojo M. Huntingtin regulates RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) nuclear trafficking indirectly through a complex with REST/NRSF-interacting LIM domain protein (RILP) and dynactin p150 Glued. J Biol Chem 2008, 283: 34880–34886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Soldati C, Bithell A, Johnston C, Wong KY, Stanton LW, Buckley NJ. Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington’s disease. J Neurochem 2013, 124: 418–430.

    Article  PubMed  CAS  Google Scholar 

  101. Zuccato C, Belyaev N, Conforti P, Ooi L, Tartari M, Papadimou E, et al. Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J Neurosci 2007, 27: 6972–6983.

    Article  PubMed  CAS  Google Scholar 

  102. Dardou D, Monlezun S, Foerch P, Courade JP, Cuvelier L, De Ryck M, et al. A role for Sv2c in basal ganglia functions. Brain Res 2013, 1507: 61–73.

    Article  PubMed  CAS  Google Scholar 

  103. Dunn AR, Stout KA, Ozawa M, Lohr KM, Hoffman CA, Bernstein AI, et al. Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proc Natl Acad Sci U S A 2017, 114: E2253–E2262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Schivell AE, Mochida S, Kensel-Hammes P, Custer KL, Bajjalieh SM. SV2A and SV2C contain a unique synaptotagmin-binding site. Mol Cell Neurosci 2005, 29: 56–64.

    Article  PubMed  CAS  Google Scholar 

  105. Crevecoeur J, Kaminski RM, Rogister B, Foerch P, Vandenplas C, Neveux M, et al. Expression pattern of synaptic vesicle protein 2 (SV2) isoforms in patients with temporal lobe epilepsy and hippocampal sclerosis. Neuropathol Appl Neurobiol 2014, 40: 191–204.

    Article  PubMed  CAS  Google Scholar 

  106. Altmann V, Schumacher-Schuh AF, Rieck M, Callegari-Jacques SM, Rieder CR, Hutz MH. Influence of genetic, biological and pharmacological factors on levodopa dose in Parkinson’s disease. Pharmacogenomics 2016, 17: 481–488.

    Article  PubMed  CAS  Google Scholar 

  107. Hill-Burns EM, Singh N, Ganguly P, Hamza TH, Montimurro J, Kay DM, et al. A genetic basis for the variable effect of smoking/nicotine on Parkinson’s disease. Pharmacogenomics J 2013, 13: 530–537.

    Article  PubMed  CAS  Google Scholar 

  108. Ramsey TL, Liu Q, Massey BW, Brennan MD. Genotypic variation in the SV2C gene impacts response to atypical antipsychotics the CATIE study. Schizophr Res 2013, 149: 21–25.

    Article  PubMed  Google Scholar 

  109. Wang F, Wan H, Hu JP, Chang S. Molecular dynamics simulations of wild type and mutants of botulinum neurotoxin A complexed with synaptic vesicle protein 2C. Mol Biosyst 2015, 11: 223–231.

    Article  PubMed  CAS  Google Scholar 

  110. Strotmeier J, Mahrhold S, Krez N, Janzen C, Lou J, Marks JD, et al. Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A. FEBS Lett 2014, 588: 1087–1093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Benoit RM, Frey D, Hilbert M, Kevenaar JT, Wieser MM, Stirnimann CU, et al. Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A. Nature 2014, 505: 108–111.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81371417).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangqian Liu or He Li.

Ethics declarations

Conflict of Interest

All authors claim that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Zhu, G., Liu, X. et al. Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. Neurosci. Bull. 34, 747–758 (2018). https://doi.org/10.1007/s12264-018-0230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-018-0230-x

Keywords

Navigation