Skip to main content
Log in

Functional analysis of Grp and Iris, the gag and env domesticated errantivirus genes, in the Drosophila melanogaster genome

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Drosophila melanogaster is the only invertebrate that contains endogenous retroviruses, which are called errantiviruses. Two domesticated genes, Grp and Iris, which originate from errantivirus gag and env, respectively, have been found in the D. melanogaster genome. The functions performed by the genes in Drosophila are still unclear. To identify the functions of domesticated gag and env in the D. melanogaster genome, expression of Iris and Grp was studied in strains differing by the presence or absence of the functional gypsy errantivirus. In addition, the expression levels were measured after injection of gram-positive and gram-negative bacteria, which activate different immune response pathways, and exposure to various abiotic stress factors. The presence of functional D. melanogaster retrovirus gypsy was found to increase the Grp expression level in somatic tissues of the carcass, while exerting no effect on the Iris expression level. Activation of the immune response in D. melanogaster by bacteria Bacillus cereus increased the Grp expression level and did not affect Iris expression. As for the effects of abiotic stress factors (oxidative stress, starvation, and heat and cold stress), the Grp expression level increased in response to starvation in D. melanogaster females, and the Iris expression level was downregulated in heat shock and oxidative stress. Based on the findings, Grp was assumed to play a direct role in the immune response in D. melanogaster; Iris is not involved in immune responses, but and apparently performs a cell function that is inhibited in stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LTR:

long terminal repeat

EPR:

endoplasmic reticulum

References

  1. Miller W.J., McDonald J.F., Pinsker W. 1997. Molecular domestication of mobile elements. Genetica. 100, 261–270.

    Article  CAS  PubMed  Google Scholar 

  2. Jern P., Coffin J.M. 2008. Effects of retroviruses on host genome function. Annu Rev. Genet. 42, 709–732.

    Article  CAS  PubMed  Google Scholar 

  3. Pardue M.L., DeBaryshe P.G. 2003. Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev. Genet. 37, 485–511.

    Article  CAS  PubMed  Google Scholar 

  4. Brennecke J., Aravin A.A., Stark A., Dus M., Kellis M., Sachidanandam R., Hannon G.J. 2007. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 128, 1089–1103.

    Article  CAS  PubMed  Google Scholar 

  5. Lander E.S., Linton L.M., Birren B., Nusbaum C., et al. International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature. 409, 860–921.

    Article  CAS  PubMed  Google Scholar 

  6. Volff J.N. 2006. Turning junk into gold: Domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays. 28, 913–922.

    Article  CAS  PubMed  Google Scholar 

  7. Aravind L. 2000. Exploring histones and their relatives with the Histone Sequence Database. Trends Biochem. Sci. 25, 421–423.

    Article  CAS  PubMed  Google Scholar 

  8. Mi S., Lee X., Li X., Veldman G.M., Finnerty H., Racie L., La V.E., Tang X.Y., Edouard P., Howes S., Keith J.C.Jr., McCoy J.M. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 403, 785–789.

    Article  CAS  PubMed  Google Scholar 

  9. Stoye J.P., Coffin J.M. 2000. A provirus put to work. Nature. 403, 715–717.

    Article  CAS  PubMed  Google Scholar 

  10. Dupressoir A., Marceau G., Vernochet C., Bé nit L., Kanellopoulos C., Sapin V., Heidmann T. 2005. Syncytin- A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc. Natl. Acad. Sci. U. S. A. 102, 725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Campillos M., Doerks T., Shah P.K., Bork P. 2006. Computational characterization of multiple Gag-like human proteins. Trends Genet. 22, 585–589.

    Article  CAS  PubMed  Google Scholar 

  12. Volff J.N. 2009. Cellular genes derived from Gypsy/Ty3 retrotransposons in mammalian genomes. Ann. NY Acad. Sci. 1178, 233–243.

    Article  CAS  PubMed  Google Scholar 

  13. Tan K.O., Tan K.M., Chan S.L., Yee K.S., Bevort M., Ang K.C., Yu V.C. 2001. MAP-1, a novel proapoptotic protein containing a BH3-like motif that associates with Bax through its Bcl-2 homology domains. J. Biol. Chem. 276, 2802–2807.

    Article  CAS  PubMed  Google Scholar 

  14. Yan Y., Buckler-White A., Wollenberg K., Kozak C.A. 2009. Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus. Proc. Natl. Acad. Sci. U. S. A. 106, 3259–3263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim A., Terzian C., Santamaria P., Pé lisson A., Prud’ homme N., Bucheton A. 1994. Retroviruses in invertebrates: The gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 91, 1285–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leblanc P., Desset S., Giorgi F., Taddei A.R., Fausto A.M., Mazzini M., Dastugue B., Vaury C. 2000. Life cycle of an endogenous retrovirus, ZAM, in Drosophila melanogaster. J. Virol. 74, 10658–10669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malik H.S., Henikoff S. 2005. Positive selection of Iris, a retroviral envelope-derived host gene in Drosophila melanogaster. PLoS Genet. 1, e44.

    Article  Google Scholar 

  18. Nefedova L., Kuzmin I., Makhnovskii P., Kim A. 2014. Domesticated retroviral GAG gene in Drosophila: New functions for an old gene. Virology. 450–451, 196–204. doi 10.1016/jvirol.2013.12.024

    Article  PubMed  Google Scholar 

  19. Kim A.I., Belyaeva E.S., Larkina Z.G., Aslanyan M.M. 1989. Genetic instability and MDG4 mobile element transposition in a Drosophila melanogaster mutator line. Genetika (Moscow). 25, 1747–1756.

    CAS  Google Scholar 

  20. Jordan K.W., Craver K.L., Magwire M.M., Cubilla C.E., Mackay T.F., Anholt R.R. 2012. Genome-wide association for sensitivity to chronic oxidative stress in Drosophila melanogaster. PLoS ONE. 7, e38722.

    Article  Google Scholar 

  21. Kingsolver M.B., Huang Z., Hardy R.W. 2013. Insect antiviral innate immunity: Pathways, effectors, and connections. J. Mol. Biol. 425, 4921–4936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nefedova L.N., Kuz’ min I.V., Burmistrova D.A., Rezazadeh C., Kim A.I. 2011. Transcriptional analysis of the Grp gene, a genomic homolog of the retrotransposon gypsy gag gene, in Drosophila melanogaster. Russ. J. Genet. 47 (8), 912–916.

    Article  CAS  Google Scholar 

  23. Aggarwal K., Silverman N. 2008. Positive and negative regulation of the Drosophila immune response. BMB Rep. 41, 267–277.

    Article  CAS  PubMed  Google Scholar 

  24. Dostert C., Jouanguy E., Irving P., Troxler L., Galiana- Arnoux D., Hetru C., Hoffmann J. Imler J.-L. 2005. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat. Immunol. 6, 946–953.

    Article  CAS  PubMed  Google Scholar 

  25. Davies S.A., Overend G., Sebastian S., Cundall M., Cabrero P., Dow J.A, Terhzaz S. 2012. Immune and stress response ‘cross-talk’ in the Drosophila Malpighian tubule. J. Insect Physiol. 58, 488–497.

    Article  CAS  PubMed  Google Scholar 

  26. Huang Z., Kingsolver M.B., Avadhanula V., Hardy R.W. 2013. An antiviral role for antimicrobial peptides during the arthropod response to alphavirus replication. J. Virology. 87 (8), 4272–4280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guruharsha K.G., Rual J.F., Zhai B., Mintseris J., Vaidya P., Vaidya N., Beekman C., Wong C., Rhee D.Y., Cenaj O., McKillip E., Shah S., Stapleton M., Wan K.H., Yu C., et al. 2011. A protein complex network of Drosophila melanogaster. Cell. 147, 690–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Imaoka S. 2011. Chemical stress on protein disulfide isomerases and inhibition of their functions. Int. Rev. Cell Mol. Biol. 290, 121–166.

    Article  CAS  PubMed  Google Scholar 

  29. Nielsen M.D., Luo X., Biteau B., Syverson K., Jasper H. 2008. 14-3-3 Epsilon antagonizes FoxO to control growth, apoptosis and longevity in Drosophila. Aging Cell. 7, 688–699.

    Article  CAS  PubMed  Google Scholar 

  30. Majzoub K., Hafirassou M.L., Meignin C., Goto A., Marzi S., Fedorova A., Verdier Y., Vinh J., Hoffmann J.A., Martin F., Baumert T.F., Schuster C., Imler J.L. 2014. RACK1 controls IRES-mediated translation of viruses. Cell. 159, 1086–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hanson P.J., Zhang H.M., Hemida M.G., Ye X., Qiu Y., Yang D. 2012. IRES-dependent translational control during virus-induced endoplasmic reticulum stress and apoptosis. Front. Microbiol. 3, 92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pisarev A.V., Shirokikh N.E., Hellen C.U. 2005. Translation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sites. C. R. Biol. 328, 589–605.

    Article  CAS  PubMed  Google Scholar 

  33. Ronfort C., de Breyne S., Sandrin V., Darlix J.L., Ohlmann T. 2004. Characterization of two distinct RNA domains that regulate translation of the Drosophila gypsy retroelement. RNA. 10, 504–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang L., Ryoo H.D., Qi Y., Jasper H. 2015. PERK limits Drosophila lifespan by promoting intestinal stem cell proliferation in response to ER stress. PLoS Genet. 11, e1005220.

    Article  Google Scholar 

  35. van der Kant R., Fish A., Janssen L., Janssen H., Krom S., Ho N., Brummelkamp T., Carette J., Rocha N., Neefjes J. 2013. Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L. J. Cell Sci. 126, 3462–3474.

    Article  PubMed  Google Scholar 

  36. Baril C., Sahmi M., Ashton-Beaucage D., Stronach B., Therrien M. 2009. The PP2C Alphabet is a negative regulator of stress-activated protein kinase signaling in Drosophila. Genetics. 181, 567–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rybakin V., Clemen C.S. 2005. Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Bioessays. 27, 625–632.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kima.

Additional information

Original Russian Text © P.A. Makhnovskii, I.V. Kuzmin, L.N. Nefedova, A.I. Kim, 2016, published in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 3, pp. 435–444.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhnovskii, P.A., Kuzmin, I.V., Nefedova, L.N. et al. Functional analysis of Grp and Iris, the gag and env domesticated errantivirus genes, in the Drosophila melanogaster genome. Mol Biol 50, 379–386 (2016). https://doi.org/10.1134/S0026893316020151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316020151

Keywords

Navigation