Skip to main content
Log in

Association of mitochondrial DNA polymorphism with myocardial infarction and prognostic signs for atherosclerosis

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

We performed an association analysis for the mtDNA major common variants and haplogroups with incidence of myocardial infarction and essential prognostic characteristics in patients. A comparison of patients (N = 406) and control groups (N = 183) uncovered a higher frequency of HV0 haplogroup in patients (6.9% vs. 2.2%; p = 0.033). Patients with early infarction (before age of 55 in men) had a higher frequency of 16189C variant, compared to patients who endured first infarction at age older than 55 (24.1% vs. 12.5%; p = 0.008). In addition, haplogroup U2e was only detected in the subgroup with early infarction (4.4%; p = 0.004). Haplogroup U5 was less frequent in patients with early infarction (5.1% vs. 15.4%; p = 0.002). Observations during a 1-year follow-up uncovered that patients with recurring cardiovascular incidents had higher frequency of haplogroup H1 (20%, versus 4.5% in patients without complications, p = 0.002) and variant 16189C (30% versus 13.5%; p = 0.018). Haplogroup U5 was more frequent in the subgroup of patients with lower (<40%) ventricular ejection fraction (17.1%, compared to 8.2%; p = 0.034). Thus, our results indicate that mtDNA polymorphism contributes to coronary atherosclerosis. The obtained associations can be explained by the effect of polymorphisms on oxidative phosphorylation and the production of reactive oxygen species in mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MI:

myocardial infarction

ACS:

acute coronary syndrome

ROS:

reactive oxygen species

mtDNA:

mitochondrial DNA

References

  1. Yu E., Calvert P.A., Mercer J.R., Harrison J., Baker L., Figg N.L., Kumar S., Wang J.C., Hurst L.A., Obaid D.R., Logan A., West N.E.J., Clarke M.C.H., Vidal-Puig A., Murphy M.P., Bennett M.R. 2013. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 128, 702–712.

    Article  CAS  PubMed  Google Scholar 

  2. Wallace D.C. 2010. Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutagen. 51, 440–450.

    CAS  PubMed  Google Scholar 

  3. Sena L.A., Chandel N.S. 2012. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell. 48, 158–167.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Gutierrez J., Ballinger S.W., Darley-Usmar V.M., Landar A. 2006. Free radicals, mitochondria, and oxidized lipids: The emerging role in signal transduction in vascular cells. Circ. Res. 99, 924–932.

    Article  CAS  PubMed  Google Scholar 

  5. Michelakis E.D. 2013. Mitochondria in vascular health and disease. Annu. Rev. Physiol. 75, 95–126.

    Article  PubMed  Google Scholar 

  6. Botto N., Berti S., Manfredi S., Al-Jabri A., Federici C., Clerico A., Ciofini E., Biagini A., Andreassi M.G. 2005. Detection of mtDNA with 4977 bp deletion in blood cells and atherosclerotic lesions of patients with coronary artery disease. Mutat. Res. 570, 81–88.

    Article  CAS  PubMed  Google Scholar 

  7. Salminen A., Ojala J., Kaarniranta K., Kauppinen A. 2012. Mitochondrial dysfunction and oxidative stress activate inflammasomes: Impact on the aging process and age-related diseases. Cell. Mol. Life Sci. 69, 2999–3013.

    Article  CAS  PubMed  Google Scholar 

  8. Gruzdeva O.V., Barbarash O.L., Palicheva E.I., Akbasheva O.E., Dyleva Yu. A., Salakhova A.S., Shurygina E.A., Kashtalap V.V., Tavlueva E.V., Barbarash L.S. 2011. Detection of oxidation-modified lipoproteins and their antibodies in case of complicated course of myocardial infarction with segment ST boost. Klin. Lab. Diagn. 7, 14–17.

    PubMed  Google Scholar 

  9. Wallace D.C. 2007. Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu. Rev. Biochem. 76, 781–821.

    Article  CAS  PubMed  Google Scholar 

  10. Conroy R.M., Pyörälä K., Fitzgerald A.P., Sans S., Menotti A, De Backer G., De Bacquer D., Ducimetière P., Jousilahti P., Keil U., Njølstad I., Oganov R.G., Thomsen T., Tunstall-Pedoe H., Tverdal A., Wedel H., Whincup P., Wilhelmsen L., Graham I.M.; 2003. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. Eur. Heart J. 24, 987–1003.

    Article  CAS  PubMed  Google Scholar 

  11. Killip T., Kimbal J.T. 1967. Treatment of myocardial infarction in a coronary care unit a two year experience with 250 patients. Am. J. Cardiol. 20, 457–464.

    Article  PubMed  Google Scholar 

  12. Mountain J.L., Hebert J.M., Bhattacharyya S., Underhill P.A., Ottolenghi C., Gadgil M., Cavallisforza L.L. 1995. Demographic history of India and mtDNA-sequence diversity. Am. J. Hum. Genet. 56, 979–992.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Hall T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  14. Torroni A., Huoponen K., Francalacci P., Petrozzi M., Morelli L., Scozzari R., Obinu D., Savontaus M.-L., Wallace D.C. 1996. Classification of European mtDNAs from an analysis of three European populations. Genetics. 144, 1835–1850.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Hegele R.A., Zinman B., Hanley A.J., Harris S., Connelly P.W. 1997. A common mtDNA polymorphism associated with variation in plasma triglyceride concentration. Am. J. Hum. Genet. 60, 1552–1555.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Freidin M.B., Puzyrev V.P., Saliukov V.B., Golubenko M.V. 1999. Association of polymorphism in non-coding regions of the human mitochondrial genome with blood pressure variability and ECG intervals. Bull. Exp. Biol. Med. 127, 82–84.

    Google Scholar 

  17. Gill-Randall R., Sherratt E.J., Thomas A.W., Gagg J.W., Lee A., Alcolado J.C. 2001. Analysis of a polycytosine tract and heteroplasmic length variation in the mitochondrial DNA D-loop of patients with diabetes, MELAS syndrome and race-matched controls. Diabet. Med. 18, 413–416.

    Article  CAS  PubMed  Google Scholar 

  18. Ye Z., Gillson C., Sims M., Khaw K.T., Plotka M., Poulton J., Langenberg C., Wareham N.J. 2013. The association of the mitochondrial DNA OriB variant (16184–16193 polycytosine tract) with type 2 diabetes in Europid populations. Diabetologia. 56, 1907–1913.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Morozova Y., Naumova O.Y., Rychkov S.Y., Zhukova O.V. 2005. Mitochondrial DNA polymorphism in Russian population form five oblasts of the European part of Russia. Russ. J. Genet. 41, 1040–1045.

    Article  CAS  Google Scholar 

  20. Poulton J., Luan J., Macaulay V., Hennings S., Mitchell J., Wareham N.J. 2002. Type 2 diabetes is associated with a common mitochondrial variant: Evidence from a population-based case-control study. Hum. Mol. Genet. 11, 1581–1583.

    Article  CAS  PubMed  Google Scholar 

  21. Bhat A., Koul A., Sharma S., Rai E., Bukhari S.I., Dhar M.K., Bamezai R.N. 2007. The possible role of 10398A and 16189C mtDNA variants in providing susceptibility to T2DM in two North Indian populations: A replicative study. Hum. Genet. 120, 821–826.

    Article  CAS  PubMed  Google Scholar 

  22. Kofler B., Mueller E.E., Eder W., Stanger O., Maier R., Weger M., Haas A., Winker R., Schmut O., Paulweber B., Iglseder B., Renner W., Wiesbauer M., Aigner I., Santic D., Zimmermann F.A., Mayr J.A., Sperl W. 2009. Mitochondrial DNA haplogroup T is associated with coronary artery disease and diabetic retinopathy: A case control study. BMC Med. Genet. 10, 35.

  23. Buikin S.V., Golubenko M.V., Puzyrev V.P. 2010. “Genes for mitochondria” in arterial hypertension and left ventricular hypertrophy. Mol. Biol. (Moscow). 44, 23–27.

    Article  CAS  Google Scholar 

  24. Cherednichenko A.A., Zheykova T.V., Golubenko M.V. 2010. Mitochondrial DNA polymorphism in human multifactorial diseases. Tr. Tomsk. Gos. Univ. 275, 427–429.

    Google Scholar 

  25. Benn M., Schwartz M., Nordestgaard B.G., Tybjaerg Hansen A. 2008. Mitochondrial haplogroups: Ischemic cardiovascular disease, other diseases, mortality, and longevity in the general population. Circulation. 117, 2493–2507.

    Article  Google Scholar 

  26. Park K.S., Chan J.C., Chuang L.M., Suzuki S., Araki E., Nanjo K., Ji L., Ng M., Nishi M., Furuta H., Shirotani T., Ahn B.Y., Chung S.S., Min H.K., Lee S.W., Kim J.H., Cho Y.M., Lee H.K.; Study Group of Molecular Diabetology in Asia. 2008. A mitochondrial DNA variant at position 16189 is associated with type 2 diabetes mellitus in Asians. Diabetologia. 51, 602–608.

    Article  CAS  PubMed  Google Scholar 

  27. Liou C.W., Lin T.K., Chen J.B. Tiao M.M., Weng S.W., Chen S.D., Chuang Y.C., Chuang J.H., Wang P.W. 2010. Association between a common mitochondrial DNA D-loop polycytosine variant and alteration of mitochondrial copy number in human peripheral blood cells. J. Med. Genet. 47, 723–728.

    Article  CAS  PubMed  Google Scholar 

  28. Abu-Amero K.K., Al-Boudari O.M., Mousa A., Gonzalez A.M., Larruga J.M., Cabrera V.M., Dzimiri N. 2010. The mitochondrial DNA variant 16189T>C is associated with coronary artery disease and myocardial infarction in Saudi Arabs. Genet. Test. Mol. Biomarkers. 14, 43–47.

    Article  CAS  PubMed  Google Scholar 

  29. Mueller E.E., Eder W., Ebner S., Schwaiger E., Santic D., Kreindl T., Stanger O., Paulweber B., Iglseder B., Oberkofler H., Maier R., Mayr J.A., Krempler F., Weitgasser R., Patsch W., Sperl W., Kofler B. 2011. The mitochondrial T16189C polymorphism is associated with coronary artery disease in middle European populations. PLOS ONE. 6, e16455.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Montiel-Sosa F., Ruiz-Pesini E., Enríquez J.A., Marcuello A, Díez-Sánchez C, Montoya J, Wallace DC, López-Pérez MJ. 2006. Differences of sperm motility in mitochondrial DNA haplogroup U sublineages. Gene. 368, 21–27.

    Article  CAS  PubMed  Google Scholar 

  31. Heather L.C., Carr C.A., Stuckey D.J., Pope S., Morten K.J., Carter E.E., Edwards L.M., Clarke K. 2010. Critical role of complex III in the early metabolic changes following myocardial infarction. Cardiovasc. Res. 85, 127–136.

    Article  CAS  PubMed  Google Scholar 

  32. Morten K., Jen C., Poulton J. 2003. The 16189 variant of mtDNA in type 2 diabetes: Towards a molecular mechanism. Diabet. Med. 31, P13.

    Google Scholar 

  33. Martinez-Redondo D., Marcuello A., Casajus J.A., Ara I., Dahmani Y., Montoya J., Ruiz-Pesini E., LópezPérez M.J., Díez-Sánchez C. 2010. Human mitochondrial haplogroup H: The highest \({V_{{o_2}}}\) max consumer— is it a paradox? Mitochondrion. 10, 102–107.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Golubenko.

Additional information

Original Russian Text © M.V. Golubenko, R.R. Salakhov, O.A. Makeeva, I.A. Goncharova, V.V. Kashtalap, O.L. Barbarash, V.P. Puzyrev, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 6, pp. 968–976.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubenko, M.V., Salakhov, R.R., Makeeva, O.A. et al. Association of mitochondrial DNA polymorphism with myocardial infarction and prognostic signs for atherosclerosis. Mol Biol 49, 867–874 (2015). https://doi.org/10.1134/S0026893315050088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315050088

Keywords

Navigation