Advertisement

Molecular Biology

, Volume 49, Issue 4, pp 569–580 | Cite as

Polymorphism of the bphA genes in bacteria destructing biphenyl/chlorinated biphenils

  • E. S. Shumkova
  • D. O. Egorova
  • S. V. Boronnikova
  • E. G. Plotnikova
Genomics. Transcriptomics

Abstract

Polychlorinated biphenyls (PCBs) are persistent organic pollutants. Biphenyl 2,3-dioxygenase (BDO) is a key enzyme that determines the range of PCBs oxidized by a bacterial strain. BDO subunit α (BphA1) plays an essential role in substrate recognition and binding. The genes for dioxygenases that hydroxylate aromatic rings were screened and analyzed phylogenetically. Genes found in biphenyl-oxidizing Rhodococcus erythropolis strains G12a, B7b, and B106a proved to be similar to the published nucleotide sequences of the Rhodococcus sp. HA99 and R04 and Novosphingobium aromaticivorans F199 bphA1 genes, which code for the α-subunits that do not belong to the biphenyl/toluene dioxygenase (B/TDO) family. PCB-destructing R. ruber P25 was found to possess a unique bphA1 gene, which clusters together with the phenylpropionate dioxygenase (PPDO) α-subunits of Mycobacterium vanbaalenii PYR-1 and Frankia sp. EuI1c. The deduced amino acid sequences of the genes were analyzed. The amino acids of the BDO active site in R. wratislaviensis P1, P12, P13, and P20 (bphA1 genes of the B/TDO family) were identical to those of the active PCB degrader R. jostii RHA1. The Rhodococcus strains in question were shown to be active toward both orthoand parachlorinated ring of 2,4'-dichlorobiphenyl. The α-subunit amino acids responsible for the substrate specificity of the enzyme in Pseudomonas sp. S9, S13, S210, S211, and S212 (B/TDO family) were the same as in P. pseudoalcaligenes KF707. The Pseudomonas strains were active toward the para-chlorinated ring of 2,4'-dichlorobiphenyl. The results of screening bacterial strains for bphA1 can be used to identify the biotechnologically promising PCB destructors.

Keywords

Rhodococcus Pseudomonas biphenyl polychlorinated biphenyls gene polymorphism bph genes biphenyl 2,3-dioxygenase 

Abbreviation

BDO

biphenyl dioxygenase

NDO

naphthalene dioxygenase

PPDO

phenylpropionate dioxygenase

B/TDO

biphenyl/toluene dioxygenase

PCB

polychlorinated biphenyl

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams N.G., Richardson D.M. 1953. Isolation and identification of biphenyls from West Edmond Crude Oil. Anal. Chem. 25, 1073–1074.CrossRefGoogle Scholar
  2. 2.
    http://www.unep/orgGoogle Scholar
  3. 3.
    Abraham W.R., Nogales B., Golyshin P.N., Pieper D.H., Timmis K.N. 2002. Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr. Opin. Microbiol. 5, 246–253.CrossRefPubMedGoogle Scholar
  4. 4.
    Suenaga H., Watanabe T., Sato M., Ngadiman, Furukawa K. 2002. Alteration of regiospecificity in biphenyl dioxygenase by active-site engineering. J. Bacteriol. 184, 3682–3688.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Pieper D.H. 2005. Aerobic degradation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol. 67, 170–191.CrossRefPubMedGoogle Scholar
  6. 6.
    Parales R.E., Resnick S.M. 2004. Aromatic ring hydroxylating dioxygenases. In: Biodegradation and Bioremediation. Eds. Singh A., Ward O.P. Berlin: Springer, pp. 175–195.CrossRefGoogle Scholar
  7. 7.
    Kumar P., Gómez- Gil L., Mohammadi M., Sylvestre M., Eltis L.D., Bolin J.T. 2011. Anaerobic crystallization and initial X-ray diffraction data of biphenyl 2,3-dioxygenase from Burkholderia xenovorans LB400: Addition of agarose improved the quality of the crystals. Acta Crystallogr. F: Struct. Biol. Cryst. Commun. 67, 59–62.CrossRefGoogle Scholar
  8. 8.
    Kumar P., Mohammadi M., Dhindwal S., Pham T.T., Bolin J.T., Sylvestre M. 2012. Structural insights into the metabolism of 2-chlorodibenzofuran by an evolved biphenyl dioxygenase. Biochem. Biophys. Res. Commun. 421, 757–762.CrossRefPubMedGoogle Scholar
  9. 9.
    Mohammadi M., Viger J.F., Kumar P., Barriault D., Bolin J.T., Sylvestre M. 2011. Retuning Rieske-type oxygenases to expand substrate range. J. Biol. Chem. 286, 27612–27621.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Colbert C.L., Agar N.Y., Kumar P., Chakko M.N., Sinha S.C., Powlowski J.B., Eltis L.D., Bolin J.T. 2013. Structural characterization of Pandoraea pnomenusa B-356 biphenyl dioxygenase reveals features of potent polychlorinated biphenyl-degrading enzymes. PLOS ONE. 8, 52550.CrossRefGoogle Scholar
  11. 11.
    Ferraro D.J., Brown E.N., Yu C.L., Parales R.E., Gibson D.T., Ramaswamy S. 2007. Structural investigations of the ferredoxin and terminal oxygenase components of the biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae B1. BMC Struct. Biol. 7, 10.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Nagarajan V., Sakurai N., Kubota M., Nonaka T., Nagumo H., Takeda H., Nishizaki T., Masai E., Fukuda M., Mitsui Y., Senda T. 2003. Crystallization of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1. Protein Pept. Lett. 10, 412–417.CrossRefPubMedGoogle Scholar
  13. 13.
    Furusawa Y., Nagarajan V., Tanokura M., Masai E., Fukuda M., Senda T. 2004. Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1. J. Mol. Biol. 342, 1041–1052.CrossRefPubMedGoogle Scholar
  14. 14.
    Suenaga H., Goto M., Furukawa K. 2006. Active-site engineering of biphenyl dioxygenase: Effect of substituted amino acids on substrate specificity and regiospecificity. Appl. Microbiol. Biotechnol. 71, 168–176.CrossRefPubMedGoogle Scholar
  15. 15.
    Gibson D.T., Parales R.E. 2000. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol. 11, 236–243.CrossRefPubMedGoogle Scholar
  16. 16.
    Takeda H., Yamada A., Miyauchi K., Masai E., Fukuda M. 2004. Characterization of transcriptional regulatory genes for biphenyl degradation in Rhodococcus sp. strain RHA1. J. Bacteriol. 186, 2134–2146.CrossRefPubMedGoogle Scholar
  17. 17.
    Iwasaki T., Miyauchi K., Masai E., Fukuda M. 2006. Multiple-subunit genes of the aromatic-ring-hudroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 72, 5396–5402.CrossRefPubMedGoogle Scholar
  18. 18.
    Yang X., Liu X., Song L., Xie F., Zhang G., Qian S. 2007. Characterization and functional analysis of a novel gene cluster involved in biphenyl degradation in Rhodococcus sp. strain R04. J. Appl. Microbiol. 103, 2214–2224.CrossRefPubMedGoogle Scholar
  19. 19.
    Taguchi K., Motoyama M., Iida T., Kudo T. 2007. Polychlorinated biphenyl/biphenyl degrading gene clusters in Rhodococcus sp. K37, HA99, and TA431 are different from well-known bph gene clusters of rhodococci. Biosci. Biotechnol. Biochem. 71, 1136–1144.PubMedGoogle Scholar
  20. 20.
    Demanèche S., Meyer C., Micoud J., Louwagie M., Willison J.C., Jouanneau Y. 2004. Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 70, 6714–6725.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Iwai S., Chai B., Sul W.J., Cole J.R., Hashsham S.A., Tiedje J.M. 2010. Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J. 4, 279–285.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Lee T.K., Lee J., Sul W.J., Iwai S., Chai B., Tiedje J.M., Park J. 2011. Novel biphenyl-oxidizing bacteria and dioxygenase genes from a Korean tidal mudflat. Appl. Environ. Microbiol. 77, 3888–3891.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Jadeja N.B., More R.P., Purohit H.J., Kapley A. 2014. Metagenomic analysis of oxygenases from activated sludge. Bioresour. Technol. 165, 250–256.CrossRefPubMedGoogle Scholar
  24. 24.
    Lozada M., Riva Mercadal J.P., Guerrero L.D., Di Marzio W.D., Ferrero M.A., Dionisi H.M. 2008. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia. BMC Microbiol. 8, 50.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Taylor P.M., Medd J.M., Schoenborn L., Hodgson B., Janssen P.H. 2002. Detection of known and novel genes encoding aromatic ring-hydroxylating dioxygenases in soils and in aromatic hydrocarbon-degrading bacteria. FEMS Microbiol. Lett. 216, 61–66.CrossRefPubMedGoogle Scholar
  26. 26.
    Standfuss-Gabisch C., Al-Halbouni D., Hofer B. 2012. Characterization of biphenyl dioxygenase sequences and activities encoded by the metagenomes of highly polychlorobiphenyl-contaminated soils. Appl. Environ. Microbiol. 78, 2706–2715.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Witzig R., Junca H., Hecht H.-J., Pieper D.H. 2006. Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: Links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases. Appl. Environ. Microbiol. 72, 3504–3514.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Shumkova E.S., Egorova D.O., Korsakova E.S., Plotnikova E.G., Dorofeeva L.V. 2014. Molecular biological characterization of biphenyl-degrading bacteria and identification of the biphenyl 2,3-dioxygenase a-subunit genes. Microbiology (Moscow). 83, 160–168.CrossRefGoogle Scholar
  29. 29.
    Plotnikova E.G., Rybkina D.O., Anan’ina L.N., Yastrebova O.V., Demakov V.A. 2006. Characteristics of microorganisms isolated from technogenic soils of the Kama region. Russ. J. Ecol. 37, 233–240.CrossRefGoogle Scholar
  30. 30.
    Plotnikova E.G., Egorova D.O., Shumkova E.S., Solyanikova I.P., Golovleva L.A. 2012. Degradation of 4-chlorobiphenyl and 4-chlorobenzoic acid by the strain Rhodococcus ruber P25. Microbiology (Moscow). 81, 143–153.CrossRefGoogle Scholar
  31. 31.
    Zaitsev M.G., Tsoi T.V., Grishenkov V.G., Plotnikova E.G., Boronin A.M. 1991. Genetic control of degradation of chlorinated benzoic acids in Arthrobacter globiformis, Corynebacterium sepedonicum, and Pseudomonas cepacia strains. FEMS Microbiol. Lett. 81, 171–176.CrossRefGoogle Scholar
  32. 32.
    Maniatis, T., Fritsch, E.F., Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.Google Scholar
  33. 33.
    Ausbel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. 1995. Short Protocols in Molecular Biology, 3rd ed. New York: Wiley.Google Scholar
  34. 34.
    Iwai S., Johnson T.A., Chai B., Hashsham S.A., Tiedje J.M. 2011. Comparison of the specificities and efficacies of primers for aromatic dioxygenase gene analysis of environmental samples. Appl. Environ. Microbiol. 77, 3551–3557.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Shumkova E.S., Plotnikova E.G. 2013. Testing of primers designed for biphenyl 2,3-dioxygenase a-subunit genes detection in bacteria isolated from contaminated soil. Bull. Perm Univ. 3, 59–64.Google Scholar
  36. 36.
    Anan’ina L.N., Yastrebova O.V., Demakov V.A., Plotnikova E.G. 2011. Naphthalene-degrading bacteria of the genus Rhodococcus from the Verkhnekamsk salt mining region of Russia. Antonie Van Leeuwenhoek. 100, 309–316.CrossRefPubMedGoogle Scholar
  37. 37.
    Larkin M.J., Allen C.C., Kulakov L.A., Lipscomb D.A. 1999. Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. J. Bacteriol. 181, 6200–6204.PubMedGoogle Scholar
  38. 38.
    Barriault D., Sylvestre M. 1999. Catalytic activity of Pseudomonas putida strain G7 naphthalene 1,2-dioxygenase on biphenyl. Int. Biodeterior. Biodegrad. 44, 33–37.CrossRefGoogle Scholar
  39. 39.
    Diaz E., Ferrandez A., Garcia J. 1998. Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12. J. Bacteriol. 180, 2915–2923.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Ohmori T., Morita H., Tanaka M., Miyauchi K., Kasai D., Furukawa K., Miyashita K., Ogawa N., Masai E., Fukuda M. 2011. Development of a strain for efficient degradation of polychlorinated biphenyls by patchwork assembly of degradation pathways. J. Biosci. Bioeng. 111, 437–442.CrossRefPubMedGoogle Scholar
  41. 41.
    Furusawa Y., Nagarajan V., Tanokura M., Masai E., Fukuda M., Senda T. 2004. Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1. J. Mol. Biol. 342, 1041–1052.CrossRefPubMedGoogle Scholar
  42. 42.
    Zielinski M., Kahl S., Hecht H.J., Hofer B. 2003. Pinpointing biphenyl dioxygenase residues that are crucial for substrate interaction. J. Bacteriol. 185, 6976–6980.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • E. S. Shumkova
    • 1
    • 2
  • D. O. Egorova
    • 2
  • S. V. Boronnikova
    • 3
  • E. G. Plotnikova
    • 2
    • 3
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Ecology and Genetics of Microorganisms, Ural BranchRussian Academy of SciencesPermRussia
  3. 3.Perm State UniversityPermRussia

Personalised recommendations