Skip to main content
Log in

Roles of zinc ions and structural polymorphism of β-amyloid in the development of Alzheimer’s disease

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Aggregation of the β-amyloid peptide (Aβ) underlies the development of Alzheimer’s disease. The review considers the main steps of the Aβ formation and aggregation. Emphasis is placed on the interaction of zinc ions with the metal-binding domain 1–16 of Aβ as a molecular mechanism leading to Aβ aggregation. Recent studies of native modifications in the Aβ metal-binding domain revealed its structural polymorphism. The prospects of further studying the modifications to determine the pathogenetic mechanism of Aβ aggregation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ:

β-amyloid

APP:

amyloid precursor protein

CSF:

cerebrospinal fluid

References

  1. Shelkovnikova T.A., Kulikova A.A., Tsvetkov Ph.O., Peters O., Bachurin S.O., Buchman V.L., Ninkina N.N. 2012. Proteinopathies, neurodegenerative disorders with protein aggregation-based pathology. Mol. Biol. (Moscow). 46, 362–374.

    Article  CAS  Google Scholar 

  2. Hof P.R., Bouras C., Perl D.P., Sparks D.L., Mehta N., Morrison J.H. 1995. Age-related distribution of neuropathologic changes in the cerebral cortex of patients with Down’s syndrome. Quantitative regional analysis and comparison with Alzheimer’s disease. Arch. Neurol. 52, 379–391.

    CAS  Google Scholar 

  3. Gavrilova S.I. 2007. Farmakoterapiya bolezni Al’tsgeimera (Pharmacological Treatment of Alzheimer’s Disease). Moscow: Pul’s.

    Google Scholar 

  4. Selkoe D.J. 2001. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 81, 741–766.

    CAS  PubMed  Google Scholar 

  5. Price D.L., Borchelt D.R., Sisodia S.S. 1993. Alzheimer disease and the prion disorders amyloid beta-protein and prion protein amyloidoses. Proc. Natl. Acad. Sci. U. S. A. 90, 6381–6384.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Morris J.C., Storandt M., McKeel D.W., Jr., Rubin E.H., Price J.L., Grant E.A., Berg L. 1996. Cerebral amyloid deposition and diffuse plaques in “normal” aging: Evidence for presymptomatic and very mild Alzheimer’s disease. Neurology. 46, 707–719.

    Article  CAS  PubMed  Google Scholar 

  7. Gavrilova S.I., Zharikov G.A. 2001. Modern strategies in pathogenetic treatment of Alzheimer’s disease. Vestn. Ross. Akad. Med. Nauk. 7, 13–18.

    PubMed  Google Scholar 

  8. Hy L.X., Keller D.M. 2000. Prevalence of AD among whites: a summary by levels of severity. Neurology. 55, 198–204.

    Article  CAS  PubMed  Google Scholar 

  9. Wortmann M. 2012. Dementia: A global health priority. Highlights from an ADI and World Health Organization report. Alzheimers Res. Ther. 4, 40.

    Google Scholar 

  10. Duyckaerts C., Delatour B., Potier M.C. 2009. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 118, 5–36.

    Article  CAS  PubMed  Google Scholar 

  11. Holtzman D.M., Morris J.C., Goate A.M. 2011. Alzheimer’s disease: The challenge of the second century. Sci. Transl. Med. 3, 77sr1.

    PubMed Central  PubMed  Google Scholar 

  12. Selkoe D.J. 2008. Biochemistry and molecular biology of amyloid beta-protein and the mechanism of Alzheimer’s disease. Handbook Clin. Neurol. 89, 245–260.

    Article  Google Scholar 

  13. LaFerla F.M. 2010. Pathways linking Abeta and tau pathologies. Biochem. Soc. Trans. 38, 993–995.

    Article  CAS  PubMed  Google Scholar 

  14. Hardy J., Selkoe D.J. 2002. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 297, 353–356.

    Article  CAS  PubMed  Google Scholar 

  15. Shankar G.M., Li S., Mehta T.H., Garcia-Munoz A., Shepardson N.E., Smith I., Brett F.M., Farrell M.A., Rowan M.J., Lemere C.A., Regan C.M., Walsh D.M., Sabatini B.L., Selkoe D.J. 2008. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Haass C. 2010. Initiation and propagation of neurodegeneration. Nat. Med. 16, 1201–1204.

    Article  CAS  PubMed  Google Scholar 

  17. Haass C., Selkoe D.J. 2007. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112.

    Article  CAS  PubMed  Google Scholar 

  18. Lacor P.N., Buniel M.C., Chang L., Fernandez S.J., Gong Y., Viola K.L., Lambert M.P., Velasco P.T., Bigio E.H., Finch C.E., Krafft G.A., Klein W.L. 2004. Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J. Neurosci. 24, 10191–10200.

    Article  CAS  PubMed  Google Scholar 

  19. Lacor P.N., Buniel M.C., Furlow P.W., Clemente A.S., Velasco P.T., Wood M., Viola K.L., Klein W.L. 2007. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J. Neurosci. 27, 796–807.

    Article  CAS  PubMed  Google Scholar 

  20. Choi S.H., Bosetti F. 2009. Cyclooxygenase-1 null mice show reduced neuroinflammation in response to beta-amyloid. Aging (Albany, NY). 1, 234–244.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Candelario-Jalil E. 2009. A role for cyclooxygenase-1 in beta-amyloid-induced neuroinflammation. Aging (Albany, NY). 1, 350–353.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Pratico D., Trojanowski J.Q. 2000. Inflammatory hypotheses: Novel mechanisms of Alzheimer’s neurodegeneration and new therapeutic targets?. Neurobiol. Aging. 21, 441–445, 451–443.

    Article  CAS  PubMed  Google Scholar 

  23. Massaad C.A., Pautler R.G., Klann E. 2009. Mitochondrial superoxide: A key player in Alzheimer’s disease. Aging (Albany, NY). 1, 758–761.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Lambert M.P., Barlow A.K., Chromy B.A., Edwards C., Freed R., Liosatos M., Morgan T.E., Rozovsky I., Trommer B., Viola K.L., Wals P., Zhang C., Finch C.E., Krafft G.A., Klein W.L. 1998. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. U. S. A. 95, 6448–6453.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Jin M., Shepardson N., Yang T., Chen G., Walsh D., Selkoe D.J. 2011. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. U. S. A. 108, 5819–5824.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Treusch S., Cyr D.M., Lindquist S. 2009. Amyloid deposits: Protection against toxic protein species?. Cell Cycle. 8, 1668–1674.

    Article  CAS  PubMed  Google Scholar 

  27. Seubert P., Vigo-Pelfrey C., Esch F., Lee M., Dovey H., Davis D., Sinha S., Schlossmacher M., Whaley J., Swindlehurst C., et al. 1992. Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature. 359, 325–327.

    Article  CAS  PubMed  Google Scholar 

  28. Haass C., Schlossmacher M.G., Hung A.Y., Vigo-Pelfrey C., Mellon A., Ostaszewski B.L., Lieberburg I., Koo E.H., Schenk D., Teplow D.B., et al. 1992. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature. 359, 322–325.

    Article  CAS  PubMed  Google Scholar 

  29. Kang J., Lemaire H.G., Unterbeck A., Salbaum J.M., Masters C.L., Grzeschik K.H., Multhaup G., Beyreuther K., Muller-Hill B. 1987. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature. 325, 733–736.

    Article  CAS  PubMed  Google Scholar 

  30. Anliker B., Muller U. 2006. The functions of mammalian amyloid precursor protein and related amyloid precursor-like proteins. Neurodegener. Dis. 3, 239–246.

    Article  CAS  PubMed  Google Scholar 

  31. Walsh D.M., Minogue A.M., Sala Frigerio C., Fadeeva J.V., Wasco W., Selkoe D.J. 2007. The APP family of proteins: similarities and differences. Biochem. Soc. Trans. 35, 416–420.

    Article  CAS  PubMed  Google Scholar 

  32. Kerrigan T.L., Atkinson L., Peers C., Pearson H.A. 2008. Modulation of’ A’-type K+ current by rodent and human forms of amyloid beta protein. Neuroreports. 19, 839–843.

    Article  CAS  Google Scholar 

  33. Tabaton M., Zhu X., Perry G., Smith M.A., Giliberto L. 2010. Signaling effect of amyloid-beta(42) on the processing of AbetaPP. Exp. Neurol. 221, 18–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Yao Z.X., Papadopoulos V. 2002. Function of betaamyloid in cholesterol transport: A lead to neurotoxicity. FASEB J. 16, 1677–1679.

    CAS  PubMed  Google Scholar 

  35. Zou K., Gong J.S., Yanagisawa K., Michikawa M. 2002. A novel function of monomeric amyloid betaprotein serving as an antioxidant molecule against metal-induced oxidative damage. J. Neurosci. 22, 4833–4841.

    CAS  PubMed  Google Scholar 

  36. Morley J.E., Farr S.A., Banks W.A., Johnson S.N., Yamada K.A., Xu L. 2010. A physiological role for amyloid-beta protein:enhancement of learning and memory. J. Alzheimer’s Dis. 19, 441–449.

    CAS  Google Scholar 

  37. Bailey J.A., Maloney B., Ge Y.W., Lahiri D.K. 2011. Functional activity of the novel Alzheimer’s amyloid beta-peptide interacting domain (AbetaID) in the APP and BACE1 promoter sequences and implications in activating apoptotic genes and in amyloidogenesis. Gene. 488, 13–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Soscia S.J., Kirby J.E., Washicosky K.J., Tucker S.M., Ingelsson M., Hyman B., Burton M.A., Goldstein L.E., Duong S., Tanzi R.E., Moir R.D. 2010. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS ONE. 5, e9505.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Kojro E., Fahrenholz F. 2005. The non-amyloidogenic pathway: Structure and function of alpha-secretases. Subcell. Biochem. 38, 105–127.

    Article  CAS  PubMed  Google Scholar 

  40. Pastor P., Goate A.M. 2004. Molecular genetics of Alzheimer’s disease. Curr. Psychiatry Rep. 6, 125–133.

    Article  PubMed  Google Scholar 

  41. Citron M., Oltersdorf T., Haass C., McConlogue L., Hung A.Y., Seubert P., Vigo-Pelfrey C., Lieberburg I., Selkoe D.J. 1992. Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature. 360, 672–674.

    Article  CAS  PubMed  Google Scholar 

  42. Herl L., Thomas A.V., Lill C.M., Banks M., Deng A., Jones P.B., Spoelgen R., Hyman B.T., Berezovska O. 2009. Mutations in amyloid precursor protein affect its interactions with presenilin/gamma-secretase. Mol. Cell Neurosci. 41, 166–174.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Haass C., Hung A.Y., Selkoe D.J., Teplow D.B. 1994. Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. J. Biol. Chem. 269, 17741–17748.

    CAS  PubMed  Google Scholar 

  44. Chiti F., Stefani M., Taddei N., Ramponi G., Dobson C.M. 2003. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature. 424, 805–808.

    Article  CAS  PubMed  Google Scholar 

  45. Nadezhdin K.D., Bocharova O.V., Bocharov E.V., Arseniev A.S. 2011. Structural and dynamic study of the transmembrane domain of the amyloid precursor protein. Acta Naturae. 3, 69–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Nadezhdin K.D., Bocharova O.V., Bocharov E.V., Arseniev A.S. 2012. Dimeric structure of transmembrane domain of amyloid precursor protein in micellar environment. FEBS Lett. 586, 1687–1692.

    Article  CAS  PubMed  Google Scholar 

  47. De Strooper B. 2007. Loss-of-function presenilin mutations in Alzheimer disease: Talking point on the role of presenilin mutations in Alzheimer disease. EMBO Rep. 8, 141–146.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Yoshiike Y., Minai R., Matsuo Y., Chen Y.R., Kimura T., Takashima A. 2008. Amyloid oligomer conformation in a group of natively folded proteins. PLoS ONE. 3, e3235.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Prusiner S.B. 2012. Cell biology. A unifying role for prions in neurodegenerative diseases. Science. 336, 1511–1513.

    CAS  Google Scholar 

  50. Ni C.L., Shi H.P., Yu H.M., Chang Y.C., Chen Y.R. 2011. Folding stability of amyloid-beta 40 monomer is an important determinant of the nucleation kinetics in fibrillization. FASEB J. 25, 1390–1401.

    Article  CAS  PubMed  Google Scholar 

  51. Harper J.D., Lansbury P.T., Jr. 1997. Models of amyloid seeding in Alzheimer’s disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407.

    Article  CAS  PubMed  Google Scholar 

  52. Naiki H., Gejyo F. 1999. Kinetic analysis of amyloid fibril formation. Methods Enzymol. 309, 305–318.

    Article  CAS  PubMed  Google Scholar 

  53. Kumar S., Walter J. 2011. Phosphorylation of amyloid beta (Abeta) peptides: A trigger for formation of toxic aggregates in Alzheimer’s disease. Aging (Albany, NY). 3, 803–812.

    PubMed Central  PubMed  Google Scholar 

  54. Roychaudhuri R., Yang M., Hoshi M.M., Teplow D.B. 2009. Amyloid beta protein assembly and Alzheimer disease. J. Biol. Chem. 284, 4749–4753.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Du D., Murray A.N., Cohen E., Kim H.E., Simkovsky R., Dillin A., Kelly J.W. 2011. A kinetic aggregation assay allowing selective and sensitive amyloid-beta quantification in cells and tissues. Biochemistry. 50, 1607–1617.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Kane M.D., Lipinski W.J., Callahan M.J., Bian F., Durham R.A., Schwarz R.D., Roher A.E., Walker L.C. 2000. Evidence for seeding of beta-amyloid by intracerebral infusion of Alzheimer brain extracts in betaamyloid precursor protein-transgenic mice. J. Neurosci. 20, 3606–3611.

    CAS  PubMed  Google Scholar 

  57. Meyer-Luehmann M., Coomaraswamy J., Bolmont T., Kaeser S., Schaefer C., Kilger E., Neuenschwander A., Abramowski D., Frey P., Jaton A.L., Vigouret J.M., Paganetti P., Walsh D.M., Mathews P.M., Ghiso J., Staufenbiel M., Walker L.C., Jucker M. 2006. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science. 313, 1781–1784.

    Article  CAS  PubMed  Google Scholar 

  58. Eisele Y.S., Bolmont T., Heikenwalder M., Langer F., Jacobson L.H., Yan Z.X., Roth K., Aguzzi A., Staufenbiel M., Walker L.C., Jucker M. 2009. Induction of cerebral beta-amyloidosis: Intracerebral versus systemic Abeta inoculation. Proc. Natl. Acad. Sci. U. S. A. 106, 12926–12931.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Watts J.C., Giles K., Grillo S.K., Lemus A., DeArmond S.J., Prusiner S.B. 2011. Bioluminescence imaging of Abeta deposition in bigenic mouse models of Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 108, 2528–2533.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Jucker M., Walker L.C. 2011. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann. Neurol. 70, 532–540.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Eisele Y.S., Obermuller U., Heilbronner G., Baumann F., Kaeser S.A., Wolburg H., Walker L.C., Staufenbiel M., Heikenwalder M., Jucker M. 2010. Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science. 330, 980–982.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Langer F., Eisele Y.S., Fritschi S.K., Staufenbiel M., Walker L.C., Jucker M. 2011. Soluble Abeta seeds are potent inducers of cerebral beta-amyloid deposition. J. Neurosci. 31, 14488–14495.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Petkova A.T., Leapman R.D., Guo Z., Yau W.M., Mattson M.P., Tycko R. 2005. Self-propagating, molecular-level polymorphism in Alzheimer’s betaamyloid fibrils. Science. 307, 262–265.

    Article  CAS  PubMed  Google Scholar 

  64. Nilsson K.P., Aslund A., Berg I., Nystrom S., Konradsson P., Herland A., Inganas O., Stabo-Eeg F., Lindgren M., Westermark G.T., Lannfelt L., Nilsson L.N., Hammarstrom P. 2007. Imaging distinct conformational states of amyloid-beta fibrils in Alzheimer’s disease using novel luminescent probes. ACS Chem. Biol. 2, 553–560.

    Article  CAS  PubMed  Google Scholar 

  65. Levine H., 3rd, Walker L.C. 2010. Molecular polymorphism of Abeta in Alzheimer’s disease. Neurobiol. Aging. 31, 542–548.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Stohr J., Watts J.C., Mensinger Z.L., Oehler A., Grillo S.K., DeArmond S.J., Prusiner S.B., Giles K. 2012. Purified and synthetic Alzheimer’s amyloid beta (Abeta) prions. Proc. Natl. Acad. Sci. U. S. A. 109, 11025–11030.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Aguzzi A., Rajendran L. 2009. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron. 64, 783–790.

    Article  CAS  PubMed  Google Scholar 

  68. Colby D.W., Prusiner S.B. 2011. Prions. Cold Spring Harbor Perspect. Biol. 3, a006833.

    Article  CAS  Google Scholar 

  69. Wadsworth J.D., Collinge J. 2011. Molecular pathology of human prion disease. Acta Neuropathol. 121, 69–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Weissmann C. 2004. The state of the prion. Nat. Rev. Microbiol. 2, 861–871.

    Article  CAS  PubMed  Google Scholar 

  71. Aguzzi A. 2007. Prion biology: The quest for the test. Nat. Methods. 4, 614–616.

    Article  CAS  PubMed  Google Scholar 

  72. Collinge J., Clarke A.R. 2007. A general model of prion strains and their pathogenicity. Science. 318, 930–936.

    Article  CAS  PubMed  Google Scholar 

  73. Pike C.J., Walencewicz A.J., Glabe C.G., Cotman C.W. 1991. Aggregation-related toxicity of synthetic betaamyloid protein in hippocampal cultures. Eur. J. Pharmacol. 207, 367–368.

    Article  CAS  PubMed  Google Scholar 

  74. Lorenzo A., Yankner B.A. 1994. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc. Natl. Acad. Sci. U. S. A. 91, 12243–12247.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Hartley D.M., Walsh D.M., Ye C.P., Diehl T., Vasquez S., Vassilev P.M., Teplow D.B., Selkoe D.J. 1999. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 8876–8884.

    CAS  PubMed  Google Scholar 

  76. Townsend M., Shankar G.M., Mehta T., Walsh D.M., Selkoe D.J. 2006. Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: A potent role for trimers. J. Physiol. 572, 477–492.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Selkoe D.J. 2008. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192, 106–113.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Shankar G.M., Bloodgood B.L., Townsend M., Walsh D.M., Selkoe D.J., Sabatini B.L. 2007. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27, 2866–2875.

    Article  CAS  PubMed  Google Scholar 

  79. Li S., Hong S., Shepardson N.E., Walsh D.M., Shankar G.M., Selkoe D. 2009. Soluble oligomers of amyloid beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 62, 788–801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Cleary J.P., Walsh D.M., Hofmeister J.J., Shankar G.M., Kuskowski M.A., Selkoe D.J., Ashe K.H. 2005. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84.

    Article  CAS  PubMed  Google Scholar 

  81. Walsh D.M., Selkoe D.J. 2007. A beta oligomers: A decade of discovery. J. Neurochem. 101, 1172–1184.

    Article  CAS  PubMed  Google Scholar 

  82. Klein W.L., Krafft G.A., Finch C.E. 2001. Targeting small Abeta oligomers: The solution to an Alzheimer’s disease conundrum?. Trends Neurosci. 24, 219–224.

    Article  CAS  PubMed  Google Scholar 

  83. Lublin A.L., Gandy S. 2010. Amyloid-beta oligomers: Possible roles as key neurotoxins in Alzheimer’s disease. Mt. Sinai J. Med. 77, 43–49.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Cappai R., Barnham K.J. 2008. Delineating the mechanism of Alzheimer’s disease A beta peptide neurotoxicity. Neurochem. Res. 33, 526–532.

    Article  CAS  PubMed  Google Scholar 

  85. Simakova O., Arispe N.J. 2007. The cell-selective neurotoxicity of the Alzheimer’s Abeta peptide is determined by surface phosphatidylserine and cytosolic ATP levels: Membrane binding is required for Abeta toxicity. J. Neurosci. 27, 13719–13729.

    Article  CAS  PubMed  Google Scholar 

  86. Mitkevich V.A., Petrushanko I.Y., Yegorov Y.E., Simonenko O.V., Vishnyakova K.S., Kulikova A.A., Tsvetkov P.O., Makarov A.A., Kozin S.A. 2013. Isomerization of Asp7 leads to increased toxic effect of amyloidbeta42 on human neuronal cells. Cell Death Dis. 4, e939.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Atwood C.S., Martins R.N., Smith M.A., Perry G. 2002. Senile plaque composition and posttranslational modification of amyloid-beta peptide and associated proteins. Peptides. 23, 1343–1350.

    Article  CAS  PubMed  Google Scholar 

  88. Walker L.C., LeVine H. 2000. The cerebral proteopathies: Neurodegenerative disorders of protein conformation and assembly. Mol. Neurobiol. 21, 83–95.

    Article  CAS  PubMed  Google Scholar 

  89. Finder V.H., Glockshuber R. 2007. Amyloid-beta aggregation. Neurodegener. Dis. 4, 13–27.

    Article  CAS  PubMed  Google Scholar 

  90. Crouch P.J., Cimdins K., Duce J.A., Bush A.I., Trounce I.A. 2007. Mitochondria in aging and Alzheimer’s disease. Rejuvenation Res. 10, 349–357.

    Article  CAS  PubMed  Google Scholar 

  91. Mawuenyega K.G., Sigurdson W., Ovod V., Munsell L., Kasten T., Morris J.C., Yarasheski K.E., Bateman R.J. 2010. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 330, 1774.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Iwata N., Higuchi M., Saido T.C. 2005. Metabolism of amyloid-beta peptide and Alzheimer’s disease. Pharmacol. Ther. 108, 129–148.

    Article  CAS  PubMed  Google Scholar 

  93. Bush A.I. 2013. The metal theory of Alzheimer’s disease. J. Alzheimers Dis. 33 Suppl. 1, S277–S281.

    PubMed  Google Scholar 

  94. Frederickson C.J., Bush A.I. 2001. Synaptically released zinc: Physiological functions and pathological effects. Biometals. 14, 353–366.

    Article  CAS  PubMed  Google Scholar 

  95. Hooper J. 1996. Mental disorders: Targeting the brain. Time. 148, 46–50.

    CAS  PubMed  Google Scholar 

  96. Frederickson C.J., Danscher G. 1990. Zinc-containing neurons in hippocampus and related CNS structures. Prog. Brain Res. 83, 71–84.

    Article  CAS  PubMed  Google Scholar 

  97. Slomianka L., Danscher G., Frederickson C.J. 1990. Labeling of the neurons of origin of zinc-containing pathways by intraperitoneal injections of sodium selenite. Neuroscience. 38, 843–854.

    Article  CAS  PubMed  Google Scholar 

  98. Koh J.Y. 2005. Endogenous zinc in neurological diseases. J. Clin. Neurol. 1, 121–133.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Paoletti P., Vergnano A.M., Barbour B., Casado M. 2009. Zinc at glutamatergic synapses. Neuroscience. 158, 126–136.

    Article  CAS  PubMed  Google Scholar 

  100. Edbauer D., Winkler E., Regula J.T., Pesold B., Steiner H., Haass C. 2003. Reconstitution of gammasecretase activity. Nat. Cell Biol. 5, 486–488.

    Article  CAS  PubMed  Google Scholar 

  101. Edwards D.R., Handsley M.M., Pennington C.J. 2008. The ADAM metalloproteinases. Mol. Aspects Med. 29, 258–289.

    Article  CAS  PubMed  Google Scholar 

  102. Leissring M.A. 2008. The AbetaCs of Abeta-cleaving proteases. J. Biol. Chem. 283, 29645–29649.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Khmeleva S.A., Mezentsev Y.V., Kozin S.A., Tsvetkov P.O., Ivanov A.S., Bodoev N.V., Makarov A.A., Radko S.P. 2013. Zinc-induced interaction of the metal-binding domain of amyloid-beta peptide with DNA. J. Alzheimer’s Dis. 36, 633–636.

    CAS  Google Scholar 

  104. Lovell M.A., Robertson J.D., Teesdale W.J., Campbell J.L., Markesbery W.R. 1998. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158, 47–52.

    Article  CAS  PubMed  Google Scholar 

  105. Lee J.Y., Cole T.B., Palmiter R.D., Suh S.W., Koh J.Y. 2002. Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 99, 7705–7710.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Miller L.M., Wang Q., Telivala T.P., Smith R.J., Lanzirotti A., Miklossy J. 2006. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J. Struct. Biol. 155, 30–37.

    Article  CAS  PubMed  Google Scholar 

  107. Dong J., Atwood C.S., Anderson V.E., Siedlak S.L., Smith M.A., Perry G., Carey P.R. 2003. Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry. 42, 2768–2773.

    Article  CAS  PubMed  Google Scholar 

  108. Bush A.I., Pettingell W.H., Multhaup G., de Paradis M., Vonsattel J.P., Gusella J.F., Beyreuther K., Masters C.L., Tanzi R.E. 1994. Rapid induction of Alzheimer Abeta amyloid formation by zinc. Science. 265, 1464–1467.

    Article  CAS  PubMed  Google Scholar 

  109. Lim K.H., Kim Y.K., Chang Y.T. 2007. Investigations of the molecular mechanism of metal-induced Abeta(1–40) amyloidogenesis. Biochemistry. 46, 13523–13532.

    Article  CAS  PubMed  Google Scholar 

  110. Deshpande A., Kawai H., Metherate R., Glabe C.G., Busciglio J. 2009. A role for synaptic zinc in activitydependent Abeta oligomer formation and accumulation at excitatory synapses. J. Neurosci. 29, 4004–4015.

    Article  CAS  PubMed  Google Scholar 

  111. Miller Y., Ma B., Nussinov R. 2010. Zinc ions promote Alzheimer Abeta aggregation via population shift of polymorphic states. Proc. Natl. Acad. Sci. U. S. A. 107, 9490–9495.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Kozin S.A., Zirah S., Rebuffat S., Hoa G.H., Debey P. 2001. Zinc binding to Alzheimer’s Abeta(1-16) peptide results in stable soluble complex. Biochem. Biophys. Res. Commun. 285, 959–964.

    Article  CAS  PubMed  Google Scholar 

  113. Mekmouche Y., Coppel Y., Hochgrafe K., Guilloreau L., Talmard C., Mazarguil H., Faller P. 2005. Characterization of the ZnII binding to the peptide amyloidbeta1-16 linked to Alzheimer’s disease. ChemBioChem. 6, 1663–1671.

    Article  CAS  PubMed  Google Scholar 

  114. Syme C.D., Viles J.H. 2006. Solution 1H NMR investigation of Zn2+ and Cd2+ binding to amyloid-beta peptide (Abeta) of Alzheimer’s disease. Biochim. Biophys. Acta. 1764, 246–256.

    Article  CAS  PubMed  Google Scholar 

  115. Talmard C., Bouzan A., Faller P. 2007. Zinc binding to amyloid-beta: Isothermal titration calorimetry and Zn competition experiments with Zn sensors. Biochemistry. 46, 13658–13666.

    Article  CAS  PubMed  Google Scholar 

  116. Zirah S., Kozin S.A., Mazur A.K., Blond A., Cheminant M., Segalas-Milazzo I., Debey P., Rebuffat S. 2006. Structural changes of region 1-16 of the Alzheimer disease amyloid beta-peptide upon zinc binding and in vitro aging. J. Biol. Chem. 281, 2151–2161.

    Article  CAS  PubMed  Google Scholar 

  117. Faller P., Hureau C. 2009. Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-beta peptide. Dalton Trans. 7, 1080–1094.

    Article  PubMed  Google Scholar 

  118. Danielsson J., Pierattelli R., Banci L., Graslund A. 2007. High-resolution NMR studies of the zinc-binding site of the Alzheimer’s amyloid beta-peptide. FEBS J. 274, 46–59.

    Article  CAS  PubMed  Google Scholar 

  119. Zirah S., Rebuffat S., Kozin S.A., Debey P., Fournier F., Lesage D., Tabet J.C. 2003. Zinc binding properties of the amyloid fragment A beta(1-16) studied by electrospray-ionization mass spectrometry. Int. J. Mass Spectrometry. 228, 999–1016.

    Article  CAS  Google Scholar 

  120. Curtain C.C., Ali F., Volitakis I., Cherny R.A., Norton R.S., Beyreuther K., Barrow C.J., Masters C.L., Bush A.I., Barnham K.J. 2001. Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276, 20466–20473.

    Article  CAS  PubMed  Google Scholar 

  121. Liu S.T., Howlett G., Barrow C.J. 1999. Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the A beta peptide of Alzheimer’s disease. Biochemistry. 38, 9373–9378.

    Article  CAS  PubMed  Google Scholar 

  122. Yang D.S., McLaurin J., Qin K., Westaway D., Fraser P.E. 2000. Examining the zinc binding site of the amyloid-beta peptide. Eur. J. Biochem. 267, 6692–6698.

    Article  CAS  PubMed  Google Scholar 

  123. Gaggelli E., Grzonka Z., Kozlowski H., Migliorini C., Molteni E., Valensin D., Valensin G. 2008. Structural features of the Cu(II) complex with the rat Abeta(1-28) fragment. Chem. Commun. (Cambridge). 3, 341–343.

    Article  Google Scholar 

  124. Tsvetkov P.O., Kulikova A.A., Golovin A.V., Tkachev Y.V., Archakov A.I., Kozin S.A., Makarov A.A. 2010. Minimal Zn2+ binding site of amyloid-beta. Biophys. J. 99, L84–L86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Kozin S.A., Tsvetkov P.O., Kulikova A.A., Indeikina M.I., Mezentsev Y.V., Istrate A.N. Popov I.A., Ivanov A.S., Polshakov V.I., Makarov A.A. 2014. Zinc-induced dimers of chemically modified Aβ are possible aggregation seeds. Alzheimer’s Dementia. 10, 793.

    Article  Google Scholar 

  126. O’Malley T.T., Oktaviani N.A., Zhang D., Lomakin A., O’Nuallain B., Linse S., Benedek G.B., Rowan M.J., Mulder F.A., Walsh D.M. 2014. Abeta dimers differ from monomers in structural propensity, aggregation paths and population of synaptotoxic assemblies. Biochem. J. 461, 413–426.

    Article  PubMed  CAS  Google Scholar 

  127. Kozin S.A., Mezentsev Y.V., Kulikova A.A., Indeykina M.I., Golovin A.V., Ivanov A.S., Tsvetkov P.O., Makarov A.A. 2011. Zinc-induced dimerization of the amyloid-beta metal-binding domain 1-16 is mediated by residues 11-14. Mol. Biosyst. 7, 1053–1055.

    Article  CAS  PubMed  Google Scholar 

  128. Portelius E., Zetterberg H., Andreasson U., Brinkmalm G., Andreasen N., Wallin A., Westman-Brinkmalm A., Blennow K. 2006. An Alzheimer’s diseasespecific beta-amyloid fragment signature in cerebrospinal fluid. Neurosci. Lett. 409, 215–219.

    Article  CAS  PubMed  Google Scholar 

  129. Istrate A.N., Tsvetkov P.O., Mantsyzov A.B., Kulikova A.A., Kozin S.A., Makarov A.A., Polshakov V.I. 2012. NMR solution structure of rat abeta(1-16): Toward understanding the mechanism of rats’ resistance to Alzheimer’s disease. Biophys. J. 102, 136–143.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Istrate A.N., Mantsyzov A.B., Kozin S.A., Polshakov V.I. 2010. Optimization of the methods for small peptide solution structure determination by NMR spectroscopy. Mol. Biol. (Moscow). 44, 958–967.

    Article  CAS  Google Scholar 

  131. Di Fede G., Catania M., Morbin M., Rossi G., Suardi S., Mazzoleni G., Merlin M., Giovagnoli A.R., Prioni S., Erbetta A., Falcone C., Gobbi M., Colombo L., Bastone A., Beeg M., Manzoni C., Francescucci B., Spagnoli A., Cantu L., Del Favero E., Levy E., Salmona M., Tagliavini F. 2009. A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science. 323, 1473–1477.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Giaccone G., Morbin M., Moda F., Botta M., Mazzoleni G., Uggetti A., Catania M., Moro M.L., Redaelli V., Spagnoli A., Rossi R.S., Salmona M., Di Fede G., Tagliavini F. 2010. Neuropathology of the recessive A673V APP mutation: Alzheimer disease with distinctive features. Acta Neuropathol. 120, 803–812.

    Article  CAS  PubMed  Google Scholar 

  133. Diomede L., Di Fede G., Romeo M., Bagnati R., Ghidoni R., Fiordaliso F., Salio M., Rossi A., Catania M., Paterlini A., Benussi L., Bastone A., Stravalaci M., Gobbi M., Tagliavini F., Salmona M. 2014. Expression of A2V-mutated Abeta in Caenorhabditis elegans results in oligomer formation and toxicity. Neurobiol. Dis. 62, 521–532.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Ono K., Condron M.M., Teplow D.B. 2010. Effects of the English (H6R) and Tottori (D7N) familial Alzheimer disease mutations on amyloid beta-protein assembly and toxicity. J. Biol. Chem. 285, 23186–23197.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Hori Y., Hashimoto T., Wakutani Y., Urakami K., Nakashima K., Condron M.M., Tsubuki S., Saido T.C., Teplow D.B., Iwatsubo T. 2007. The Tottori (D7N) and English (H6R) familial Alzheimer disease mutations accelerate Abeta fibril formation without increasing protofibril formation. J. Biol. Chem. 282, 4916–4923.

    Article  CAS  PubMed  Google Scholar 

  136. Chen W.T., Hong C.J., Lin Y.T., Chang W.H., Huang H.T., Liao J.Y., Chang Y.J., Hsieh Y.F., Cheng C.Y., Liu H.C., Chen Y.R., Cheng I.H. 2012. Amyloid-beta (Abeta) D7H mutation increases oligomeric Abeta42 and alters properties of Abeta-zinc/copper assemblies. PLoS ONE. 7, e35807.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Xu L., Chen Y., Wang X. 2014. Dual effects of familial Alzheimer’s disease mutations (D7H, D7N, and H6R) on amyloid beta peptide: Correlation dynamics and zinc binding. Proteins. 82(12), 3286–3297. doi 10.1002/prot.24669

    Article  CAS  PubMed  Google Scholar 

  138. Kaden D., Harmeier A., Weise C., Munter L.M., Althoff V., Rost B.R., Hildebrand P.W., Schmitz D., Schaefer M., Lurz R., Skodda S., Yamamoto R., Arlt S., Finckh U., Multhaup G. 2012. Novel APP/Abeta mutation K16N produces highly toxic heteromeric Abeta oligomers. EMBO Mol. Med. 4, 647–659.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Popov I.A., Indeikina M.I., Kononikhin A.S., Starodubtseva N.L., Kozin S.A., Makarov A.A., Nikolaev E.N. 2013. ESI-MS identification of the minimal zincbinding center in natural isoforms of β-amyloid domain 1–16. Mol. Biol. (Moscow). 47, 440–445.

    Article  CAS  Google Scholar 

  140. Kozin S.A., Kulikova A.A., Istrate A.N., Tsvetkov P.O., Zhokhov S.S., Mezentsev Y.V., Ivanov A.S., Polshakov V.I., Makarov A.A. 2015. The English (H6R) familial Alzheimer’s disease mutation facilitates zincinduced dimerization of the amyloid-β metal-binding domain. Metallomics. DOI: 10.1039/C4MT00259H.

    Google Scholar 

  141. Saido T.C., Yamao-Harigaya W., Iwatsubo T., Kawashima S. 1996. Amino- and carboxyl-terminal heterogeneity of beta-amyloid peptides deposited in human brain. Neurosci. Lett. 215, 173–176.

    Article  CAS  PubMed  Google Scholar 

  142. Roher A.E., Lowenson J.D., Clarke S., Woods A.S., Cotter R.J., Gowing E., Ball M.J. 1993. beta-Amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 90, 10836–10840.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Roher A.E., Palmer K.C., Yurewicz E.C., Ball M.J., Greenberg B.D. 1993. Morphological and biochemical analyses of amyloid plaque core proteins purified from Alzheimer disease brain tissue. J. Neurochem. 61, 1916–1926.

    Article  CAS  PubMed  Google Scholar 

  144. Shapira R., Austin G.E., Mirra S.S. 1988. Neuritic plaque amyloid in Alzheimer’s disease is highly racemized. J. Neurochem. 50, 69–74.

    Article  CAS  PubMed  Google Scholar 

  145. Tomiyama T., Asano S., Furiya Y., Shirasawa T., Endo N., Mori H. 1994. Racemization of Asp23 residue affects the aggregation properties of Alzheimer amyloid beta protein analogues. J. Biol. Chem. 269, 10205–10208.

    CAS  PubMed  Google Scholar 

  146. Schilling S., Zeitschel U., Hoffmann T., Heiser U., Francke M., Kehlen A., Holzer M., Hutter-Paier B., Prokesch M., Windisch M., Jagla W., Schlenzig D., Lindner C., Rudolph T., Reuter G., Cynis H., Montag D., Demuth H.U., Rossner S. 2008. Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat. Med. 14, 1106–1111.

    Article  CAS  PubMed  Google Scholar 

  147. Milton N.G. 2001. Phosphorylation of amyloid-beta at the serine 26 residue by human cdc2 kinase. Neuroreports. 12, 3839–3844.

    Article  CAS  Google Scholar 

  148. Kumar S., Rezaei-Ghaleh N., Terwel D., Thal D.R., Richard M., Hoch M., Mc Donald J.M., Wullner U., Glebov K., Heneka M.T., Walsh D.M., Zweckstetter M., Walter J. 2011. Extracellular phosphorylation of the amyloid beta-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer’s disease. EMBO J. 30, 2255–2265.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Querfurth H.W., LaFerla F.M. 2010. Alzheimer’s disease. N. Engl. J. Med. 362, 329–344.

    Article  CAS  PubMed  Google Scholar 

  150. Fossati S., Todd K., Sotolongo K., Ghiso J., Rostagno A. 2013. Differential contribution of isoaspartate posttranslational modifications to the fibrillization and toxic properties of amyloid beta and the Asn23 Iowa mutation. Biochem. J. 456, 347–360.

    Article  CAS  PubMed  Google Scholar 

  151. Shimizu T., Watanabe A., Ogawara M., Mori H., Shirasawa T. 2000. Isoaspartate formation and neurodegeneration in Alzheimer’s disease. Arch. Biochem. Biophys. 381, 225–234.

    Article  CAS  PubMed  Google Scholar 

  152. Xin F., Radivojac P. 2012. Post-translational modifications induce significant yet not extreme changes to protein structure. Bioinformatics. 28, 2905–2913.

    Article  CAS  PubMed  Google Scholar 

  153. Kuo Y.M., Webster S., Emmerling M.R., De Lima N., Roher A.E. 1998. Irreversible dimerization/tetramerization and post-translational modifications inhibit proteolytic degradation of A beta peptides of Alzheimer’s disease. Biochim. Biophys. Acta. 1406, 291–298.

    Article  CAS  PubMed  Google Scholar 

  154. Tekirian T.L., Yang A.Y., Glabe C., Geddes J.W. 1999. Toxicity of pyroglutaminated amyloid beta-peptides 3(pE)-40 and -42 is similar to that of Abeta1-40 and -42. J. Neurochem. 73, 1584–1589.

    Article  CAS  PubMed  Google Scholar 

  155. Kummer M.P., Hermes M., Delekarte A., Hammerschmidt T., Kumar S., Terwel D., Walter J., Pape H.C., Konig S., Roeber S., Jessen F., Klockgether T., Korte M., Heneka M.T. 2011. Nitration of tyrosine 10 critically enhances amyloid beta aggregation and plaque formation. Neuron. 71, 833–844.

    Article  CAS  PubMed  Google Scholar 

  156. Indeykina M.I., Popov I.A., Kozin S.A., Kononikhin A.S., Kharybin O.N., Tsvetkov P.O., Makarov A.A., Nikolaev E.N. 2011. Capabilities of MS for analytical quantitative determination of the ratio of alpha- and betaAsp7 isoforms of the amyloid-beta peptide in binary mixtures. Anal. Chem. 83, 3205–3210.

    Article  CAS  PubMed  Google Scholar 

  157. Tsvetkov P.O., Popov I.A., Nikolaev E.N., Archakov A.I., Makarov A.A., Kozin S.A. 2008. Isomerization of the Asp7 residue results in zinc-induced oligomerization of Alzheimer’s disease amyloid beta(1-16) peptide. ChemBioChem. 9, 1564–1567.

    Article  CAS  PubMed  Google Scholar 

  158. Kozin S.A., Cheglakov I.B., Ovsepyan A.A., Telegin G.B., Tsvetkov P.O., Lisitsa A.V., Makarov A.A. 2013. Peripherally applied synthetic peptide isoAsp7-Abeta(1-42) triggers cerebral beta-amyloidosis. Neurotox. Res. 24, 370–376.

    Article  CAS  PubMed  Google Scholar 

  159. Toropygin I.Y., Kugaevskaya E.V., Mirgorodskaya O.A., Elisseeva Y.E., Kozmin Y.P., Popov I.A., Nikolaev E.N., Makarov A.A., Kozin S.A. 2008. The N-domain of angiotensin-converting enzyme specifically hydrolyzes the Arg-5-His-6 bond of Alzheimer’s Abeta-(1-16) peptide and its isoAsp-7 analogue with different efficiency as evidenced by quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 22, 231–239.

    Article  CAS  PubMed  Google Scholar 

  160. Kumar S., Wirths O., Theil S., Gerth J., Bayer T.A., Walter J. 2013. Early intraneuronal accumulation and increased aggregation of phosphorylated Abeta in a mouse model of Alzheimer’s disease. Acta Neuropathol. 125, 699–709.

    Article  CAS  PubMed  Google Scholar 

  161. Kulikova A.A., Tsvetkov P.O., Indeykina M.I., Popov I.A., Zhokhov S.S., Golovin A.V., Polshakov V.I., Kozin S.A., Nudler E., Makarov A.A. 2014. Phosphorylation of Ser8 promotes zinc-induced dimerization of the amyloid-beta metal-binding domain. Mol. Biosyst. 10, 2590–2596.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kulikova.

Additional information

Original Russian Text © A.A. Kulikova, A.A. Makarov, S.A. Kozin, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 2, pp. 249–263.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, A.A., Makarov, A.A. & Kozin, S.A. Roles of zinc ions and structural polymorphism of β-amyloid in the development of Alzheimer’s disease. Mol Biol 49, 217–230 (2015). https://doi.org/10.1134/S0026893315020065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315020065

Keywords

Navigation