Skip to main content
Log in

High glucose promotes gap junctional communication in cultured neonatal cardiac fibroblasts via AMPK activation

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Cardiac fibroblasts are known to be essential for adaptive responses in the pathogenesis of cardiovascular diseases, and increased intercellular communication of myocardial cells and cardiac fibroblasts acts as a crucial factor in maintaining the functional integrity of the heart. AMP-activated kinase (AMPK) is a key stress signaling kinase, which plays an important role in promoting cell survival and improving cell function. However, the underlying link between AMPK and gap junctional communication (GJIC) is still poorly understood. In this study, a connection between AMPK and GJIC in high glucose-mediated neonatal cardiac fibroblasts was assessed using fibroblast migration, measurement of dye transfer and connexin43 (Cx43) expression. 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and Compound C (CC) were used to regulate AMPK activity. The levels of cell migration and Cx43 protein expression in neonatal cardiac fibroblasts increased during high glucose treatment, accompanied by developed dye transfer. In addition, high glucose induced abundant phosphorylation of AMPK. Suppression of AMPK phosphorylation using CC reduced dye transfer, cell migration and Cx43 protein expression in neonatal cardiac fibroblasts, whereas the activation of AMPK using AICAR mimicked the high glucose-mediated cell migration, Cx43 protein expression and dye transfer enhancement. AMPK appears to participate in regulating GJIC in high-glucose-treated neonatal cardiac fibroblasts, including cell migration, dye transfer, Cx43 expression and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camelliti P., Borg T.K., Kohl P. 2005. Structural and functional characterization of cardiac fibroblasts. Cardiovasc. Res. 65, 40–51.

    Article  PubMed  CAS  Google Scholar 

  2. Thum T., Gross C., Fiedler J., Fischer T., Kissler S., Bussen M., Galuppo P., Just S., Rottbauer W., Frantz S., Castoldi M., Soutschek J., Koteliansky V., Rosenwald A., Basson M.A., Licht J.D., Pena J.T., Rouhanifard S.H., Muckenthaler M.U., Tuschl T., Martin G.R., Bauersachs J., Engelhardt S. 2008. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 456, 980–984.

    Article  PubMed  CAS  Google Scholar 

  3. Takeda N., Manabe I., Uchino Y., Eguchi K., Matsumoto S., Nishimura S., Shindo T., Sano M., Otsu K., Snider P., Conway S.J., Nagai R. 2010. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J. Clin. Invest. 120, 254–265.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Cai X.J., Chen L., Li L., Feng M., Li X., Zhang K., Rong Y.Y., Hu X.B., Zhang M.X., Zhang Y., Zhang M. 2010. Adiponectin inhibits lipopolysaccharide-induced adventitial fibroblast migration and transition to myofibroblasts via AdipoR1-AMPK-iNOS pathway. Mol. Endocrinol. 24, 218–228.

    Article  PubMed  CAS  Google Scholar 

  5. Cieslik K.A., Trial J., Entman M.L. 2011. Defective myofibroblast formation from mesenchymal stem cells in the aging murine heart rescue by activation of the AMPK pathway. Am. J. Pathol. 179, 1792–1806.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Abdullah K.M., Luthra G., Bilski J.J., Abdullah S.A., Reynolds L.P., Redmer D.A., Grazul-Bilska A.T. 1999. Cell-to-cell communication and expression of gap junctional proteins in human diabetic and nondiabetic skin fibroblasts: effects of basic fibroblast growth factor. Endocrine. 10, 35–341.

    Article  PubMed  CAS  Google Scholar 

  7. Lemcke H., Kuznetsov S.A. 2013. Involvement of connexin43 in the EGF/EGFR signalling during self-renewal and differentiation of neural progenitor cells. Cell Signal. 25, 2676–2684.

    Article  PubMed  CAS  Google Scholar 

  8. Shen J., Wang L.H., Zheng L.R., Zhu J.H., Hu S.J. 2010. Lovastatin inhibits gap junctional communication in cultured aortic smooth muscle cells. J. Cardiovasc. Pharmacol. Ther. 15, 296–302.

    Article  PubMed  CAS  Google Scholar 

  9. Howarth F.C., Chandler N.J., Kharche S., Tellez J.O., Greener I.D., Yamanushi T.T., Billeter R., Boyett M.R., Zhang H., Dobrzynski H. 2008. Effects of streptozotocin induceddiabetes on connexin43 mRNA and protein expression in ventricular muscle. Mol. Cell Biochem. 319, 105–114.

    Article  PubMed  CAS  Google Scholar 

  10. Stilli D., Lagrasta C., Berni R., Bocchi L., Savi M., Delucchi F., Graiani G., Monica M., Maestri R., Baruffi S., Rossi S., Macchi E., Musso E., Quaini F. 2007. Preservation of ventricular performance at early stages of diabetic cardiomyopathy involves changes in myocyte size, number and intercellular coupling. Basic Res. Cardiol. 102, 488–499.

    Article  PubMed  CAS  Google Scholar 

  11. Yu L., Zhao Y., Fan Y., Wang M., Xu S., Fu G. 2010. Epigallocatechin-3 gallate, a green tea catechin, attenuated the downregulation of the cardiac gap junction induced by high glucose in neonatal rat cardiomyocytes. Cell Physiol. Biochem. 26, 403–412.

    Article  PubMed  CAS  Google Scholar 

  12. Hardie D.G. 2007. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nature Rev. Mol. Cell Biol. 8, 774–785.

    Article  CAS  Google Scholar 

  13. Phoenix K.N., Devarakonda C.V., Fox M.M., Stevens L.E., Claffey K.P. 2012. AMPKα2 suppresses murine embryonic fibroblast transformation and tumorigenesis. Genes Cancer. 3, 51–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Zarrinpashneh E., Carjaval K., Beauloye C., Ginion A., Mateo P., Pouleur A.C., Horman S., Vaulont S., Hoerter J., Viollet B., Hue L., Vanoverschelde J.L., Bertrand L. 2006. Role of the alpha2-isoform of AMP-activated protein kinase in themetabolic response of the heart to no-flow ischemia. Am. J. Physiol. Heart Circ. Physiol. 291, H2875–2883.

    PubMed  CAS  Google Scholar 

  15. Cieslik K.A., Taffet G.E., Crawford J.R., Trial J., Mejia Osuna P., Entman M.L. 2013. AICAR-dependent AMPK activation improves scar formation in the aged heart in a murine model of reperfused myocardial infarction. J. Mol. Cell. Cardiol. 63, 26–36.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao Y., Yu L., Xu S., Qiu F., Fan Y., Fu G. 2011. Down-regulation of connexin43 gap junction by serum deprivation in human endothelial cells was improved by (−)-epigallocatechin gallate via ERK MAP kinase pathway. Biochem. Biophys. Res. Commun. 404, 217–222.

    Article  PubMed  CAS  Google Scholar 

  17. Dlugosova K., Weismann P., Bernatova I., Sotnikova R., Slezak J., Okruhlicova L. 2009. Omega-3 fatty acids and atorvastatin affect connexin 43 expression in the aorta of hereditary hypertriglyceridemic rats. Can. J. Physiol. Pharmacol. 87, 1074–1082.

    Article  PubMed  CAS  Google Scholar 

  18. Boswell B.A., VanSlyke J.K., Musil L.S. 2010. Regulation of lens gap junctions by transforming growth factor beta. Mol. Biol. Cell. 21, 1686–1697.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Pistorio A.L., Ehrlich H.P. 2011. Modulatory effects of connexin-43 expression on gap junction intercellular communications with mast cells and fibroblasts. J. Cell Biochem. 112, 1441–1449.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Walker D.L., Vacha S.J., Kirby M.L., Lo C.W. 2005. Connexin-43 deficiency causes dysregulation of coronary vasculogenesis. Dev. Biol. 284, 479–498.

    Article  PubMed  CAS  Google Scholar 

  21. Noli C., Miolo A. 2001. The mast cell in wound healing. Vet. Dermatol. 12, 303–313.

    Article  PubMed  CAS  Google Scholar 

  22. Chan A.Y., Soltys C.L., Young M.E., Proud C.G., Dyck J.R. 2004. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiacmyocyte. J. Biol. Chem. 279, 32771–32779.

    Article  PubMed  CAS  Google Scholar 

  23. Avivar-Valderas A., Bobrovnikova-Marjon E., Alan Diehl J., Bardeesy N., Debnath J., Aguirre-Ghiso J.A. 2013. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene. 32, 4932–4940.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Li X., Han Y., Pang W., Li C., Xie X., Shyy J.Y., Zhu Y. 2008. AMP-activated protein kinase promotes the differentiation of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 28, 1789–1795.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Stone J.D., Narine A., Shaver P.R., Fox J.C., Vuncannon J.R., Tulis D.A. 2013. AMP-activated protein kinase inhibits vascular smooth muscle cell proliferation and migration and vascular remodeling following injury. Am. J. Physiol. Heart Circ. Physiol. 304, H369–H381.

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Moopanar T.R., Xiao X.H., Jiang L., Chen Z.P., Kemp B.E., Allen D.G. 2006. AICAR inhibits the Na+/H+ exchanger in rat hearts: Possible contribution to cardioprotection. Pflugers Arch. 453, 147–156.

    Article  PubMed  CAS  Google Scholar 

  27. Jin J., Mullen T.D., Hou Q., Bielawski J., Bielawska A., Zhang X., Obeid L.M., Hannun Y.A., Hsu Y.T. 2009. AMPK inhibitor Compound C stimulates ceramide production and promotes Bax redistribution and apoptosis in MCF7 breast carcinoma cells. J. Lipid Res. 50, 2389–2397.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Gaidhu M.P., Fediuc S., Anthony N.M., So M., Mirpourian M., Perry R.L., Ceddia R.B. 2009. Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: Novel mechanisms integrating HSL and ATGL. J. Lipid Res. 50, 704–715.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Yang Z., Wang X., He Y., Qi L., Yu L., Xue B., Shi H. 2012. The full capacity of AICAR to reduce obesity-induced inflammation and insulin resistance requires myeloid SIRT1. PLoS ONE. 7, e49935.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. -J. Hu.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 4, pp. 687–695.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Zhao, W.T., Chen, F.X. et al. High glucose promotes gap junctional communication in cultured neonatal cardiac fibroblasts via AMPK activation. Mol Biol 48, 599–606 (2014). https://doi.org/10.1134/S0026893314040025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314040025

Keywords

Navigation