Skip to main content
Log in

Effects of streptozotocin-induced diabetes on connexin43 mRNA and protein expression in ventricular muscle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Abnormal QT prolongation with the associated arrhythmias is a significant predictor of mortality in diabetic patients. Gap junctional intercellular communication allows electrical coupling between heart muscle cells. The effects of streptozotocin (STZ)-induced diabetes mellitus on the expression and distribution of connexin 43 (Cx43) in ventricular muscle have been investigated. Cx43 mRNA expression was measured in ventricular muscle by quantitative PCR. The distribution of total Cx43, phosphorylated Cx43 (at serine 368) and non-phosphorylated Cx43 was measured in ventricular myocytes and ventricular muscle by immunocytochemistry and confocal microscopy. There was no significant difference in Cx43 mRNA between diabetic rat ventricle and controls. Total and phosphorylated Cx43 were significantly increased in ventricular myocytes and ventricular muscle and dephosphorylated Cx43 was not significantly altered in ventricular muscle from diabetic rat hearts compared to controls. Disturbances in gap junctional intercellular communication, which in turn may be attributed to alterations in balance between total, phosphorylated and dephosporylated Cx43, might partly underlie prolongation of QRS and QT intervals in diabetic heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amos AF, McCarty DJ, Zimmet P (1997) The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 14:S7–S85. doi:10.1002/(SICI)1096-9136(199712)14:5+<S7::AID-DIA522>3.3.CO;2-I

  2. Julien J (1997) Cardiac complications in non-insulin-dependent diabetes mellitus. J Diabetes Complicat 11:123–130. doi:10.1016/S1056-8727(96)00091-8

    Article  PubMed  CAS  Google Scholar 

  3. Dhalla NS, Pierce GN, Innes IR, Beamish RE (1985) Pathogenesis of cardiac dysfunction in diabetes mellitus. Can J Cardiol 1:263–281

    PubMed  CAS  Google Scholar 

  4. Casis O, Echevarria E (2004) Diabetic cardiomyopathy: electromechanical cellular alterations. Curr Vasc Pharmacol 2:237–248. doi:10.2174/1570161043385655

    Article  PubMed  CAS  Google Scholar 

  5. Veglio M, Chinaglia A, Cavallo-Perin P (2004) QT interval, cardiovascular risk factors and risk of death in diabetes. J Endocrinol Invest 27:175–181

    PubMed  CAS  Google Scholar 

  6. Takebayashi K, Sugita R, Tayama K, Aso Y, Takemura Y, Inukai T (2003) The connection between QT dispersion and autonomic neuropathy in patients with Type 2 diabetes. Exp Clin Endocrinol Diabetes 111:351–357. doi:10.1055/s-2003-42726

    Article  PubMed  CAS  Google Scholar 

  7. Rana BS, Band MM, Ogston S, Morris AD, Pringle SD, Struthers AD (2002) Relation of QT interval dispersion to the number of different cardiac abnormalities in diabetes mellitus. Am J Cardiol 90:483–487. doi:10.1016/S0002-9149(02)02518-3

    Article  PubMed  Google Scholar 

  8. Rossing P, Breum L, Major-Pedersen A, Sato A, Winding H, Pietersen A et al (2001) Prolonged QTc interval predicts mortality in patients with Type 1 diabetes mellitus. Diabet Med 18:199–205. doi:10.1046/j.1464-5491.2001.00446.x

    Article  PubMed  CAS  Google Scholar 

  9. Zhang Y, Xiao J, Lin H, Luo X, Wang H, Bai Y et al (2007) Ionic mechanisms underlying abnormal QT prolongation and the associated arrhythmias in diabetic rabbits: a role of rapid delayed rectifier K+ current. Cell Physiol Biochem 19:225–238

    PubMed  CAS  Google Scholar 

  10. Fromaget C, el Aoumari A, Gros D (1992) Distribution pattern of connexin 43, a gap junctional protein, during the differentiation of mouse heart myocytes. Differentiation 51:9–20. doi:10.1111/j.1432-0436.1992.tb00675.x

    Article  PubMed  CAS  Google Scholar 

  11. Inoguchi T, Yu HY, Imamura M, Kakimoto M, Kuroki T, Maruyama T et al (2001) Altered gap junction activity in cardiovascular tissues of diabetes. Med Electron Microsc 34:86–91. doi:10.1007/s007950170002

    Article  PubMed  CAS  Google Scholar 

  12. Sohl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228–232. doi:10.1016/j.cardiores.2003.11.013

    Article  PubMed  CAS  Google Scholar 

  13. Kuroki T, Inoguchi T, Umeda F, Ueda F, Nawata H (1998) High glucose induces alteration of gap junction permeability and phosphorylation of connexin-43 in cultured aortic smooth muscle cells. Diabetes 47:931–936. doi:10.2337/diabetes.47.6.931

    Article  PubMed  CAS  Google Scholar 

  14. Mitasikova M, Lin H, Soukup T, Imanaga I, Tribulova N (2008) Diabetes and thyroid hormones affect connexin-43 and PKC-epsilon expression in rat heart atria. Physiol Res (Epub ahead of print)

  15. Lin H, Ogawa K, Imanaga I, Tribulova N (2006) Alterations of connexin 43 in the diabetic rat heart. Adv Cardiol 42:243–254

    Article  PubMed  CAS  Google Scholar 

  16. Lin H, Ogawa K, Imanaga I, Tribulova N (2006) Remodeling of connexin 43 in the diabetic rat heart. Mol Cell Biochem 290(1–2):69–78. doi:10.1007/s11010-006-9166-y

    PubMed  CAS  Google Scholar 

  17. Howarth FC, Qureshi MA, White E (2002) Effects of hyperosmotic shrinking on ventricular myocyte shortening and intracellular Ca(2+) in streptozotocin-induced diabetic rats. Pflügers Arch 444:446–451. doi:10.1007/s00424-002-0830-0

    Article  PubMed  CAS  Google Scholar 

  18. Musa H, Lei M, Honjo H, Jones SA, Dobrzynski H, Lancaster MK et al (2002) Heterogeneous expression of Ca(2+) handling proteins in rabbit sinoatrial node. J Histochem Cytochem 50:311–324

    PubMed  CAS  Google Scholar 

  19. Pandit SV, Clark RB, Giles WR, Demir SS (2001) A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys J 81:3029–3051

    PubMed  CAS  Google Scholar 

  20. Pandit SV, Giles WR, Demir SS (2003) A mathematical model of the electrophysiological alterations in rat ventricular myocytes in type-I diabetes. Biophys J 84:832–841

    Article  PubMed  CAS  Google Scholar 

  21. Kharche S, Zhang H, Holden AV (2005) Hypertrophy in rat virtual left ventricular cells and tissue. LNCS 3504:153–161

    Google Scholar 

  22. Meiry G, Reisner Y, Feld Y, Goldberg S, Rosen M, Ziv N et al (2001) Evolution of action potential propagation and repolarization in cultured neonatal rat ventricular myocytes. J Cardiovasc Electrophysiol 12:1269–1277. doi:10.1046/j.1540-8167.2001.01269.x

    Article  PubMed  CAS  Google Scholar 

  23. Gima K, Rudy Y (2002) Ionic current basis of electrocardiographic waveforms: a model study. Circ Res 90:889–896. doi:10.1161/01.RES.0000016960.61087.86

    Article  PubMed  CAS  Google Scholar 

  24. Buxton RS, Magee AI (1992) Structure and interactions of desmosomal and other cadherins. Semin Cell Biol 3:157–167

    Article  PubMed  CAS  Google Scholar 

  25. Shiono J, Horigome H, Kamoda T, Matsui A (2001) Signal-averaged electrocardiogram in children and adolescents with insulin-dependent diabetes mellitus. Acta Paediatr 90:1244–1248. doi:10.1080/080352501317130263

    Article  PubMed  CAS  Google Scholar 

  26. Celiker A, Akinci A, Ozin B (1994) The signal-averaged electrocardiogram in diabetic children. Int J Cardiol 44:271–274. doi:10.1016/0167-5273(94)90291-7

    Article  PubMed  CAS  Google Scholar 

  27. Yang Q, Kiyoshige K, Fujimoto T, Katayama M, Fujino K, Saito K et al (1990) Signal-averaging electrocardiogram in patients with diabetes mellitus. Jpn Heart J 31:25–33

    PubMed  CAS  Google Scholar 

  28. Howarth FC, Jacobson M, Naseer O, Adeghate E (2005) Short-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats. Exp Physiol 90:237–245. doi:10.1113/expphysiol.2004.029439

    Article  PubMed  CAS  Google Scholar 

  29. Howarth FC, Jacobson M, Shafiullah M, Adeghate E (2005) Long-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats. Exp Physiol 90:827–835. doi:10.1113/expphysiol.2005.031252

    Article  PubMed  CAS  Google Scholar 

  30. Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW et al (2002) Defective intracellular Ca(2 +) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol 283:H1398–H1408

    CAS  Google Scholar 

  31. Duncan JC, Fletcher WH (2002) alpha 1 Connexin (connexin43) gap junctions and activities of cAMP-dependent protein kinase and protein kinase C in developing mouse heart. Dev Dyn 223:96–107. doi:10.1002/dvdy.1232

    Article  PubMed  CAS  Google Scholar 

  32. Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL (1992) Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci USA 89:11059–11063. doi:10.1073/pnas.89.22.11059

    Article  PubMed  CAS  Google Scholar 

  33. Davidoff AJ, Davidson MB, Carmody MW, Davis ME, Ren J (2004) Diabetic cardiomyocyte dysfunction and myocyte insulin resistance: role of glucose-induced PKC activity. Mol Cell Biochem 262:155–163. doi:10.1023/B:MCBI.0000038231.68078.4b

    Article  PubMed  CAS  Google Scholar 

  34. Lampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG, Lau AF (2000) Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J Cell Biol 149:1503–1512. doi:10.1083/jcb.149.7.1503

    Article  PubMed  CAS  Google Scholar 

  35. Gurusamy N, Watanabe K, Ma M, Zhang S, Muslin AJ, Kodama M et al (2005) Inactivation of 14–3-3 protein exacerbates cardiac hypertrophy and fibrosis through enhanced expression of protein kinase C beta 2 in experimental diabetes. Biol Pharm Bull 28:957–962. doi:10.1248/bpb.28.957

    Article  PubMed  CAS  Google Scholar 

  36. Fiordaliso F, Cuccovillo I, Bianchi R, Bai A, Doni M, Salio M et al (2006) Cardiovascular oxidative stress is reduced by an ACE inhibitor in a rat model of streptozotocin-induced diabetes. Life Sci 79:121–129. doi:10.1016/j.lfs.2005.12.036

    Article  PubMed  CAS  Google Scholar 

  37. Fiordaliso F, Bianchi R, Staszewsky L, Cuccovillo I, Doni M, Laragione T et al (2004) Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats. J Mol Cell Cardiol 37:959–968. doi:10.1016/j.yjmcc.2004.07.008

    Article  PubMed  CAS  Google Scholar 

  38. Severs NJ (1994) Pathophysiology of gap junctions in heart disease. J Cardiovasc Electrophysiol 5:462–475. doi:10.1111/j.1540-8167.1994.tb01185.x

    Article  PubMed  CAS  Google Scholar 

  39. Uzzaman M, Honjo H, Takagishi Y, Emdad L, Magee AI, Severs NJ et al (2000) Remodeling of gap junctional coupling in hypertrophied right ventricles of rats with monocrotaline-induced pulmonary hypertension. Circ Res 86:871–878

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the United Arab Emirates University (01-05-8-11/07) and the British Heart Foundation, and a travel bursary from the British Council, Abu Dhabi, UAE. Ms Natalie J. Chandler was supported by the Welcome Trust (vacation scholarship award no. VS/04/LEE/A2/OA/AM/FH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Howarth.

Additional information

The authors F.C. Howarth, N.J. Chandler contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howarth, F.C., Chandler, N.J., Kharche, S. et al. Effects of streptozotocin-induced diabetes on connexin43 mRNA and protein expression in ventricular muscle. Mol Cell Biochem 319, 105–114 (2008). https://doi.org/10.1007/s11010-008-9883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9883-5

Keywords

Navigation