Skip to main content
Log in

Influence of orthosteric ligand binding on the conformational dynamics of the β-2-adrenergic receptor via essential dynamics sampling simulation

  • Structural and Functional Analysis of Biopolymers and Biopolymer Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The influence of the binding of orthosteric ligands on the conformational dynamics of the β-2-adrenoreceptor was identified using the molecular dynamics method. It was found that there was a small fraction of active states of the receptor in its apo (ligand free) ensemble. An analysis of the MD trajectories indicated that this spontaneous activation of the receptor was accompanied by the motion of its VI helix. Thus, the receptor’s constitutive activity is a direct result of its conformational dynamics. On the other hand, the binding of the full agonist resulted in a significant shift in the initial equilibrium towards its active state. Finally, the binding of the inverse agonist stabilized receptor in its inactive state. It is likely that the binding of the inverse agonists might be a universal method of the constitutive activity inhibition. Our results indicate that ligand binding redistributes preexisting conformational degrees of freedom (in accordance to the Monod-Wyman-Changeux Model), rather than causes an induced fit. Therefore, the ensemble of the biologically relevant receptors conformations has been encoded in its spatial structure and individual conformations from that ensemble and might be used by the cell according to the physiological behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

Abbreviations

MD:

molecular dynamics

EDS:

essential dynamics sampling

GPCR:

G-protein coupled receptors

7-TM:

7-transmembrane

B2AR:

β-2-adrenoreceptor

TMD:

transmembrane domain

PDB:

protein data bank

SD:

standard deviation

PCA:

principal componential analysis

PC:

principal component

References

  1. Ishima R., Torchia D.A. 2000. Protein dynamics from NMR. Nature Struct. Biol. 1, 740–743.

    Article  Google Scholar 

  2. Congreve M., Marshall F. 2010. The impact of GPCR structures on pharmacology and structure-based drug design. Br. J. Pharmacol. 159, 986–996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bosier B., Hermans E. 2007. Versatility of GPCR recognition by drugs: from biological implications to therapeutic relevance. Trends Pharmacol. Sci. 28, 438–446.

    Article  CAS  PubMed  Google Scholar 

  4. Costa T., Cotecchia S. 2005. Historical review: Negative efficacy and the constitutive activity of G-protein-coupled receptors. Trends Pharmacol. Sci. 26, 618–624.

    Article  CAS  PubMed  Google Scholar 

  5. Deupi X., Standfuss J. 2011. Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr. Opin. Struct. Biol. 21, 541–545.

    Article  CAS  PubMed  Google Scholar 

  6. Boehr D.D., Nussinov R., Wright P.E. 2009. The role of dynamic conformational ensembles in biomolecular recognition. Nature Chem. Biol. 5, 789–796.

    Article  CAS  Google Scholar 

  7. Vaidehi N., Kenakin T. 2010. The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Curr. Opin. Pharmacol. 10, 775–781.

    Article  CAS  PubMed  Google Scholar 

  8. Canals M, Lane J.R., Wen A., Scammells P.J., Sexton P.M., Christopoulos A. 2012. A Monod-Wyman-Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation. J. Biol. Chem. 287, 650–659.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kenakin T. 2002. Efficacy at G-protein-coupled receptors. Nature Rev. Drug Discov. 1, 103–110.

    Article  CAS  Google Scholar 

  10. Kenakin T.P. 2009. 7TM receptor allostery: Putting numbers to shapeshifting proteins. Trends Pharmacol. Sci. 30, 460–469.

    Article  CAS  PubMed  Google Scholar 

  11. Klepeis J.L., Lindorff-Larsen K., Dror R.O., Shaw D.E. 2009. Long-timescale molecular dynamics simulations of protein structure and function. Curr. Opin. Struct. Biol. 19, 120–127.

    Article  CAS  PubMed  Google Scholar 

  12. Johnston J. M., Filizola M. 2011. Showcasing modern molecular dynamics simulations of membrane proteins through G protein-coupled receptors. Curr. Opin. Struct. Biol. 21, 552–558.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Durrant J.D., McCammon J.A. 2011. Molecular dynamics simulations and drug discovery. BMC Biol. 9, 71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Johnson J., Liggett S. 2011. Cardiovascular pharmacogenomics of adrenergic receptor signaling: Clinical implications and future directions. Clin. Pharmacol. Therap. 89, 366–378.

    Article  CAS  Google Scholar 

  15. Litonjua A.A. 2006. The significance of β2-adrenergic receptor polymorphisms in asthma. Curr. Opin. Pulm. Med. 12, 12–17.

    Article  CAS  PubMed  Google Scholar 

  16. Ma S., Dai Y. 2011. Principal component analysis-based methods in bioinformatics studies. Brief Bioinform. 12, 714–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hayward S., Kitao A., Go N. 1995. Harmonicity and anharmonicity in protein dynamics: A normal mode analysis and principal component analysis. Proteins. 23, 177–186.

    Article  CAS  PubMed  Google Scholar 

  18. Swaminath G., Deupi X., Lee T.W., Zhu W., Thian F.S., Kobilka T.S., Kobilka B. 2005. Probing the p2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J. Biol Chem. 280, 221–225.

    Article  Google Scholar 

  19. Amadei A., Linssen A., De Groot B., Van Aalten D., Berendsen H. 1996. An efficient method for sampling the essential subspace of proteins. J. Biomol. Struct. Dyn. 13, 615–625.

    Article  CAS  PubMed  Google Scholar 

  20. Snow C., Qi G., Hayward S. 2007. Essential dynamics sampling study of adenylate kinase: Comparison to citrate synthase and implication for the hinge and shear mechanisms of domain motions. Proteins: Struct. Funct. Bioinform. 67, 325–337.

    Article  CAS  Google Scholar 

  21. Daidone I., Amadei A., Roccatano D., Nola A.D. 2003. Molecular dynamics simulation of protein folding by essential dynamics sampling: Folding landscape of horse heart cytochrome c. Biophys. J. 85, 2865–2871.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Novikov G., Sivozhelezov V., Shaitan K. 2013. Study of structural dynamics of ligand-activated membrane receptors by means of principal component analysis. Biochemistry (Moscow). 78, 403–411.

    Article  CAS  Google Scholar 

  23. Kobilka B.K., Deupi X. 2007. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 397–406.

    Article  CAS  PubMed  Google Scholar 

  24. Deupi X., Kobilka B.K. 2010. Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology (Bethesda). 25, 293–303.

    Article  CAS  Google Scholar 

  25. Bond R.A., IJzerman A.P. 2006. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol. Sci. 27, 92–96.

    Article  CAS  PubMed  Google Scholar 

  26. Smit M.J., Vischer H.F., Bakker R.A., Jongejan A., Timmerman H., Pardo L., Leurs R. 2007. Pharmacogenomic and structural analysis of constitutive g protein-coupled receptor activity. Ann. Rev. Pharmacol Toxicol. 47, 53–87.

    Article  CAS  Google Scholar 

  27. Violin J.D., DiPilato L.M., Yildirim N., Elston T.C., Zhang J., Lefkowitz R.J. 2008. β2-Adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J. Biol. Chem. 283, 2949–2961.

    Article  CAS  PubMed  Google Scholar 

  28. Kenakin T.P. 1997. Competitive antagonism. In: Pharmacologic Analysis of Drug-Receptor Interaction. Philadelphia: Lippincott-Raven, pp. 331–373.

    Google Scholar 

  29. Rajagopal S., Ahn S., Rominger D.H., Gowen-Mac-Donald W., Lam., DeWire S.M., Violin J.D., Lefkowitz R.J. 2011. Quantifying ligand bias at seven-transmembrane receptors. Mol. Pharmacol. 80, 367–377.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Rosenbaum D.M., Zhang C., Lyons J.A., Holl R., Aragao D., Arlow D.H., Rasmussen S.G.F., Choi H.J., DeVree B.T., Sunahara R.K. 2011. Structure and function of an irreversible agonist-[bgr] 2 adrenoceptor complex. Nature. 469, 236–240.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Scarselli M., Li B., Kim S.K., Wess J. 2007. Multiple residues in the second extracellular loop are critical for M3 muscarinic acetylcholine receptor activation. J. Biol. Chem. 282, 7385–7396.

    Article  CAS  PubMed  Google Scholar 

  32. Wheatley M., Simms J., Hawtin S., Wesley V., Wootten D., Conner M., Lawson Z., Conner A., Baker A., Cashmore Y. 2007. Extracellular loops and ligand binding to a subfamily of Family A G-protein-coupled receptors. Biochem. Soc. Trans. 35, 717.

    Article  CAS  PubMed  Google Scholar 

  33. Bokoch M.P., Zou Y., Rasmussen S.G., Liu C.W., Nygaard R., Rosenbaum D.M., Fung J J., Choi H.J., Thian F.S., Kobilka T.S., Puglisi J.D., Weis W.I., Pardo L., Prosser R.S., Mueller L., Kobilka B.K. 2010. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature. 463, 108–112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Peeters M., Van Westen G., Li Q., Ijzerman A. 2011. Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. Trends Pharmacol. 32, 35–42.

    Article  CAS  Google Scholar 

  35. Nygaard R., Frimurer T.M., Hoist B., Rosenkilde M.M., Schwartz T.W. 2009. Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol. Sci. 30, 249–259.

    Article  CAS  PubMed  Google Scholar 

  36. Ballesteros J., Weinstein H. 1995. Integrated methods for modeling G-protetn coupled receptors. Methods Neurosci. 25, 366–428.

    Article  CAS  Google Scholar 

  37. Ghanouni P., Schambye H., Seifert R., Lee T.W., Rasmussen S.G., Gether U., Kobilka B.K. 2000. The effect of pH on β2 adrenoceptor function: Evidence for protonation-dependent activation. J. Biol. Chem. 275, 3121–3127.

    Article  CAS  PubMed  Google Scholar 

  38. Dror R.O., Arlow D.H., Maragakis P., Mildorf T.J., Pan A.C., Xu H., Borhani D.W., Shaw D.E. 2011. Activation mechanism of the beta2-adrenergic receptor. Proc. Natl. Acad. Sci. U. S. A. 108, 18684–18689.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Bahar I. 2010. On the functional significance of soft modes predicted by coarse-grained models for membrane proteins. J.Gen. Phys. 135, 563–573.

    Article  CAS  Google Scholar 

  40. Nygaard R., Zou Y., Dror R.O., Mildorf T.J., Arlow D.H., Manglik A., Pan A.C., Liu C.W., Fung J.J., Bokoch M.P. 2013. The dynamic process of β2-adrenergic receptor activation. Cell. 152, 532–542.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Novikov.

Additional information

Original Russian Text © G.V. Novikov, V.S. Sivozhelezov, K.V. Shaitan, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 3, pp. 463–479.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, G.V., Sivozhelezov, V.S. & Shaitan, K.V. Influence of orthosteric ligand binding on the conformational dynamics of the β-2-adrenergic receptor via essential dynamics sampling simulation. Mol Biol 48, 399–413 (2014). https://doi.org/10.1134/S0026893314030157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314030157

Keywords

Navigation