Skip to main content
Log in

Freshwater sponge silicateins: Comparison of gene sequences and exon-intron structure

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Silicateins found in spicules of siliceous sponges are proteins that take part in biogenic silica precipitation and determine the morphological features of spicules. The exon-intron structure of the genes encoding four silicatein-α isoforms (−α1, −α2, −α3, and −α4) from an endemic Baikalian sponge Lubomirskia baicalensis was studied. For eight sponge species, including both cosmopolitan (Spongilla lacustris, Ephydatia muelleri, E. fluviatilis) and endemic Baikalian (L. baicalensis, L. incrustans, Baikalospongia intermedia, B. fungiformis, Sw. papyracea) species, seventeen partial sequences of different silicatein isoform genes were determined. It was shown that cosmopolitan and endemic Baikalian sponges differ from each other in gene structure, in particular, in intron length. Among Baikalian sponges, silicatein-α1 genes had the highest variation of intron length, and silicatein-α4 genes were the most conservative. A phylogenetic analysis based on amino acid sequences of different silicatein isoforms identified four distinct clusters within the freshwater sponge clade. An analysis based on exon-intron gene sequences enables discrimination between different sponge species within the clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shimizu K., Cha J., Stucky G.D., Morse D.E. 1998. Silicatein alpha: Cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. U. S. A. 95, 6234–6238.

    Article  PubMed  CAS  Google Scholar 

  2. Cha J.N., Shimizu K., Zhou Y., Christianssen S.C., Chmelka B.F., Stucky G.D., Morse D.E. 1999. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl. Acad. Sci. U. S. A. 96, 361–365.

    Article  PubMed  CAS  Google Scholar 

  3. Krasko A., Batel R., Schroeder H.C., Mueller I.M., Mueller W.E.G. 2000. Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur. J. Biochem. 267, 4878–4887.

    Article  PubMed  CAS  Google Scholar 

  4. Pozzolini M., Sturla L., Cerrano C., Bavestrello G., Camardella L., Parodi A.M., Raheli F., Benatti U., Mueller W.E.G., Giovine M. 2004. Molecular cloning of silicatein gene from marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Mar. Biotechnol. (N.Y.). 6, 594–603.

    Article  CAS  Google Scholar 

  5. Armirotti A., Damonte G., Pozzolini M., Mussino F., Cerrano C., Salis A., Benatti U., Giovine M. 2009. Primary structure and post translation modification of silicatein beta from the marine sponge Petrosia ficiformis (Poiret, 1789). J. Proteome Res. (http://pubs.acs.org), 1–29.

  6. Cao X., Fu W., Yu X., Zhang W. 2007. Dynamics of spicule production in the marine sponge Hymeniacidon perlevis during in vitro cell culture and seasonal development in the field. Cell Tissue Res. 329, 595–608.

    Article  PubMed  Google Scholar 

  7. Mueller W.E.G., Boreiko A., Wang X., Belikov S.I., Wiens M., Grebenjuk V.A., Schlobetamacher U., Schroeder H.C. 2007. Silicateins, the major biosilica forming enzymes present in demosponges: Protein analysis and phylogenetic relationship. Gene. 395, 62–71.

    Article  CAS  Google Scholar 

  8. Mueller W.E.G., Wang X., Kropf K., Boreiko A., Schlossmacher U., Brandt D., Schroeder H.C, Wiens M. 2008. Silicatein expression in the hexactinellid Crateromorpha meyeri: The lead marker gene restricted to siliceous sponges. Cell Tissue Res. 333, 339–351.

    Article  CAS  Google Scholar 

  9. Kozhemyako V.B., Veremeichik G.N., Shkryl Y.N., Kovalchuk S.N., Krasokhin V.B., Rasskazov V.A., Zhuravlev Y.N., Bulgakov V.P., Kulchin Y.N. 2009. Silicatein genes in spicule-forming and nonspicule-forming pacific Demosponges. Mar. Biotechnol. (http://www.springerlink.com/content/g6253r384j8g6lu9/fulltext.pdf), 1–7.

  10. Weaver J.C., Morse D.E. 2003. Molecular biology of Demosponge axial filaments and their roles in biosilicification. Microsc. Res. Techn. 62, 356–367.

    Article  CAS  Google Scholar 

  11. Kaluzhnaya O.V., Belikov S.I., Schroeder H.C., Rothenberger M., Zapf S., Kaandorp J.P., Borejko A., Mueller I.M., Mueller W.E.G. 2005. Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis: 2. Molecular biological studies. Naturwissenschaften. 92, 128–133.

    Article  PubMed  CAS  Google Scholar 

  12. Murr M.M., Morse D.E. 2005. Fractal intermediates in the self-assembly of silicatein filaments. Proc. Natl. Acad. Sci U. S. A. 102, 11657–11662.

    Article  PubMed  CAS  Google Scholar 

  13. Mueller W.E.G., Schlobetamacher U., Wang X., Boreiko A., Brandt D., Wolf S.E., Tremel W., Schroeder H.C. 2008. Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica polymerase and silica esterase). FEBS J. 275, 362–370.

    Article  CAS  Google Scholar 

  14. Mohri K., Nakatsukasa M., Masuda Y., Agata K, Funayama N. 2008. Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: Differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis. Dev. Dynam. 273, 3024–3039.

    Article  Google Scholar 

  15. Funayama N., Nakatsukasa M., Kuraku S., Takechi K., Dohi M., Iwabe N., Miyata T. and Agata K. 2005. Isolation of Ef silicatein and Ef lectin as molecular markers for sclerocytes and cells involved in innate immunity in the freshwater sponge Ephydatia fluviatilis. Zool. Sci. 22, 1113–1122.

    Article  PubMed  CAS  Google Scholar 

  16. Kaluzhnaya O.V., Belikova A.S., Podolskaya E.P., Krasko A.G., Muller W.E.G., Belikov S.I. 2007. Identification of silicateins in freshwater sponge Lubomirskia baicalensis. Mol. Biol. (Moscow). 41, 554–561).

    Article  CAS  Google Scholar 

  17. Efremova S.M. 2001. Sponges (Porifera). In: Annotirovannyi spisok fauny ozera Baikal i ego vodosbornogo basseina (Index of Animal Species Inhabiting Lake Baikal and Its Catchment Area). Novosibirsk: Nauka, vol. 1, pp. 179–192.

    Google Scholar 

  18. Itskovich V.B., Gontcharov A., Masuda Y., Nohno T., Belikov S.I., Efremova S.M., Meixner M., Janussen D. 2008. Ribosomal ITS sequences allow resolution of freshwater sponge phylogeny with alignments guided by secondary structure prediction. J. Mol. Evol. 67, 608–620.

    Article  PubMed  CAS  Google Scholar 

  19. Ludwig M.Z. 2002. Functional evolution of noncoding DNA. Curr. Opin. Genet. Dev. 12, 634–639.

    Article  PubMed  CAS  Google Scholar 

  20. Atambayeva Sh.A., Khailenko V.A., Ivashchenko A.T. 2008. Intron and exon length variation in Arabidopsis, rice, nematode, and human. Mol. Biol. (Moscow). 42, 312–320.

    Article  CAS  Google Scholar 

  21. Hall T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  22. Phillips A., Janies D., Wheeler W.C. 2000. Multiple sequence alignment in phylogenetic analysis. Mol. Phyl. Evol. 16, 317–330.

    Article  CAS  Google Scholar 

  23. Saitou N., Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  24. Felsenstein J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  PubMed  CAS  Google Scholar 

  25. Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19, 1572–1574.

    Article  PubMed  CAS  Google Scholar 

  26. Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Genetics Analysis (MEGA) soft-ware version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  27. Guindon S., Delsuc F., Dufayard J.F., Gascuel O. 2009. Estimating maximum likelihood phylogenies with PhyML. Methods Mol. Biol. 537, 113–137.

    Article  PubMed  CAS  Google Scholar 

  28. Keane T.M, Creevey C.J., Pentony M.M., Naughton T.J., McInerney J.O. 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that assumptions for choice of matrix are not justified. BMC Evol. Biol. 6, 29.

    Article  PubMed  Google Scholar 

  29. King N., Westbrook J., Young S., et al. 2008. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 451, 783–788.

    Article  PubMed  CAS  Google Scholar 

  30. Irimia M., Roy S.W. 2008. Spliceosomal introns as tools for genomic and evolutionary analysis. Nucleic Acids Res. 36, 1703–1712.

    Article  PubMed  CAS  Google Scholar 

  31. Efremova S.M., Itskovich V.B., Parfenova V.V., Drucker V.V., Müller W.E., Schröder H.C. 2002. Lake Baikal: A unique place to study evolution of sponges and their stress response in an environment nearly unimpaired by anthropogenic perturbation. Cell. Mol. Biol. 48, 359–371.

    PubMed  CAS  Google Scholar 

  32. Prychitko T., Moore W. 2003. Alignment and phylogenetic analysis of b-fibrinogen intron 7 sequences among avian orders reveal conserved regions within the intron. Mol. Biol. Evol. 20, 762–771.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kalyuzhnaya.

Additional information

Original Russian Text © O.V. Kalyuzhnaya, A.G. Krasko, V.A. Grebenyuk, V.B. Itskovich, N.A. Semiturkina, I.S. Solovarov, W.E.G. Mueller, S.I. Belikov, 2011, published in Molekulyarnaya Biologiya, 2011, Vol. 45, No. 4, pp. 617–626.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyuzhnaya, O.V., Krasko, A.G., Grebenyuk, V.A. et al. Freshwater sponge silicateins: Comparison of gene sequences and exon-intron structure. Mol Biol 45, 567–575 (2011). https://doi.org/10.1134/S002689331103006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331103006X

Keywords

Navigation