Skip to main content
Log in

Cell defense systems against oxidative stress and endoplasmic reticulum stress: Mechanisms of regulation and the effect of hepatitis C virus

  • Molecular and Applied Aspects of Virology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Hepatitis C virus (HCV) is one of the most widespread and dangerous human pathogens. In most cases, hepatitis C develops into chronic conditions, which often escape antiviral therapy and cause damage to various organs and systems. The conditions include liver fibrosis, steatosis, and hepatocellular carcinoma. These diseases are currently linked to oxidative stress and endoplasmic reticulum (ER) stress, which are induced by virus proteins. At the same time, HCV disturbs the systems that protect cells from these stresses, thus avoiding their effect on the virus life cycle. The review analyzes recent data on the function of the cell defense system in HCV-infected and uninfected cells. In addition, the structure of the HCV genome and the main functions of virus proteins are summarized in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARE:

antioxidant response element

ATF:

activating transcription factor

bZIP:

basic region and leucine zipper

ERAD:

ER-associated protein degradation

IRE1:

inositol-requiring enzyme 1

Keap1:

Kelch-associating protein 1

MAPK:

mitogen-activated protein kinase

Nf-κB:

nuclear factor κB

ORF:

open reading frame

PERK-PKR:

like endoplasmic reticulum-associated kinase

PI3K-phos:

phatidyl inositol 3-kinase

PKC:

protein kinase C

PKR:

protein kinase R

STAT-3:

signal transducer and activator of transcription 3

UPR:

unfolded potein response

ROS:

reactive oxygen species

HCV:

hepatitis C virus

ER:

endoplasmic reticulum

References

  1. Global surveillance and control of hepatitis C. Report of a WHO Consultation organized in collaboration with the Viral Hepatitis Prevention Board, Antwerp, Belgium. 1999. J. Viral. Hepat. 6, 35–47.

    Article  Google Scholar 

  2. Martell M., Esteban J.I., Quer J., Genesca J., Weiner A., Esteban R., Guardia J., Gomez J. 1992. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: Quasispecies nature of HCV genome distribution. J. Virol. 66, 3225–3229.

    PubMed  CAS  Google Scholar 

  3. Bostan N., Mahmood T. 2010. An overview about hepatitis C: A devastating virus. Crit. Rev. Microbiol. 36, 91–133.

    Article  PubMed  CAS  Google Scholar 

  4. Lemon S.A., Walker C.M., Alter M.J., Yi M.-K. 2007. Hepatitis C virus. In: Fields Virology, vol. 1. Eds. Knipe D.M., Howley P.M. Philadelphia, PA.: Lippincott Williams & Wilkins, pp. 1253–1304.

    Google Scholar 

  5. Rosen H.R., Gretch D.R. 1999. Hepatitis C virus: Current understanding and prospects for future therapies. Mol. Med. Today. 5, 393–399.

    Article  PubMed  CAS  Google Scholar 

  6. Nocente R., Ceccanti M., Bertazzoni G., Cammarota G., Silveri N.G., Gasbarrini G. 2003. HCV infection and extrahepatic manifestations. Hepatogastroenterology. 50, 1149–1154.

    PubMed  Google Scholar 

  7. Fried M.W., Shiffman M.L., Reddy K.R., Smith C., Marinos G., Goncales F.L., Jr., Haussinger D., Diago M., Carosi G., Dhumeaux D., Craxi A., Lin A., Hoffman J., Yu J. 2002. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med. 347, 975–982.

    Article  PubMed  CAS  Google Scholar 

  8. Manns M.P., Wedemeyer H., Cornberg M. 2006. Treating viral hepatitis C: Efficacy, side effects, and complications. Gut. 55, 1350–1359.

    Article  PubMed  CAS  Google Scholar 

  9. Ronn R., Sandstrom A. 2008. New developments in the discovery of agents to treat hepatitis C. Curr. Top. Med. Chem. 8, 533–562.

    Article  PubMed  Google Scholar 

  10. McHutchison J.G., Everson G.T., Gordon S.C., Jacobson I.M., Sulkowski M., Kauffman R., McNair L., Alam J., Muir A.J. 2009. Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N. Engl. J. Med. 360, 1827–1838.

    Article  PubMed  CAS  Google Scholar 

  11. Tillmann H.L., Manns M.P., Rudolph K.L. 2005. Merging models of hepatitis C virus pathogenesis. Semin. Liver Dis. 25, 84–92.

    Article  PubMed  CAS  Google Scholar 

  12. Smirnova I.S., Aksenov N.D., Vonsky M.S., Isaguliants M.G. 2006. Different transformation pathways of murine fibroblast NIH 3T3 cells by hepatitis C virus core and NS3 proteins. Cell Biol. Int. 30, 915–919.

    Article  PubMed  CAS  Google Scholar 

  13. Park J.S., Yang J.M., Min M.K. 2000. Hepatitis C virus nonstructural protein NS4B transforms NIH3T3 cells in cooperation with the Ha-ras oncogene. Biochem. Biophys. Res. Commun. 267, 581–587.

    Article  PubMed  CAS  Google Scholar 

  14. Moriya K., Nakagawa K., Santa T., Shintani Y., Fujie H., Miyoshi H., Tsutsumi T., Miyazawa T., Ishibashi K., Horie T., Imai K., Todoroki T., Kimura S., Koike K. 2001. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res. 61, 4365–4370.

    PubMed  CAS  Google Scholar 

  15. Tardif K.D., Mori K., Siddiqui A. 2002. Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway. J. Virol. 76, 7453–7459.

    Article  PubMed  CAS  Google Scholar 

  16. Oh J.W., Sheu G.T., Lai M.M. 2000. Template requirement and initiation site selection by hepatitis C virus polymerase on a minimal viral RNA template. J. Biol. Chem. 275, 17710–17717.

    Article  PubMed  CAS  Google Scholar 

  17. Xu Z., Choi J., Yen T.S., Lu W., Strohecker A., Govindarajan S., Chien D., Selby M.J., Ou J. 2001. Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J. 20, 3840–3848.

    Article  PubMed  CAS  Google Scholar 

  18. Acosta-Rivero N., Rodriguez A., Musacchio A., Falcon V., Suarez V.M., Chavez L., Morales-Grillo J., Duenas-Carrera S. 2004. Nucleic acid binding properties and intermediates of HCV core protein multimerization in Pichia pastoris. Biochem. Biophys. Res. Commun. 323, 926–931.

    Article  PubMed  CAS  Google Scholar 

  19. Tanaka Y., Shimoike T., Ishii K., Suzuki R., Suzuki T., Ushijima H., Matsuura Y., Miyamura T. 2000. Selective binding of hepatitis C virus core protein to synthetic oligonucleotides corresponding to the 5′ untranslated region of the viral genome. Virology. 270, 229–236.

    Article  PubMed  CAS  Google Scholar 

  20. Kao C.F., Chen S.Y., Chen J.Y., Wu Lee Y.H. 2004. Modulation of p53 transcription regulatory activity and post-translational modification by hepatitis C virus core protein. Oncogene. 23, 2472–2483.

    Article  PubMed  CAS  Google Scholar 

  21. Mamiya N., Worman H.J. 1999. Hepatitis C virus core protein binds to a DEAD box RNA helicase. J. Biol. Chem. 274, 15751–15756.

    Article  PubMed  CAS  Google Scholar 

  22. Dansako H., Naganuma A., Nakamura T., Ikeda F., Nozaki A., Kato N. 2003. Differential activation of interferon-inducible genes by hepatitis C virus core protein mediated by the interferon stimulated response element. Virus Res. 97, 17–30.

    Article  PubMed  CAS  Google Scholar 

  23. Korenaga M., Wang T., Li Y., Showalter L.A., Chan T., Sun J., Weinman S.A. 2005. Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J. Biol. Chem. 280, 37481–37488.

    Article  PubMed  CAS  Google Scholar 

  24. Deleersnyder V., Pillez A., Wychowski C., Blight K., Xu J., Hahn Y.S., Rice C.M., Dubuisson J. 1997. Formation of native hepatitis C virus glycoprotein complexes. J. Virol. 71, 697–704.

    PubMed  CAS  Google Scholar 

  25. Lavillette D., Pecheur E.I., Donot P., Fresquet J., Molle J., Corbau R., Dreux M., Penin F., Cosset F.L. 2007. Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus. J. Virol. 81, 8752–8765.

    Article  PubMed  CAS  Google Scholar 

  26. Ciccaglione A.R., Marcantonio C., Tritarelli E., Equestre M., Magurano F., Costantino A., Nicoletti L., Rapicetta M. 2004. The transmembrane domain of hepatitis C virus E1 glycoprotein induces cell death. Virus Res. 104, 1–9.

    Article  PubMed  CAS  Google Scholar 

  27. Chan S.W., Egan P.A. 2005. Hepatitis C virus envelope proteins regulate CHOP via induction of the unfolded protein response. FASEB J. 19, 1510–1512.

    PubMed  CAS  Google Scholar 

  28. Griffin S.D., Beales L.P., Clarke D.S., Worsfold O., Evans S.D., Jaeger J., Harris M.P., Rowlands D.J. 2003. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett. 535, 34–38.

    Article  PubMed  CAS  Google Scholar 

  29. Steinmann E., Penin F., Kallis S., Patel A.H., Bartenschlager R., Pietschmann T. 2007. Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog. 3, e103.

    Article  PubMed  CAS  Google Scholar 

  30. Tai C.L., Chi W.K., Chen D.S., Hwang L.H. 1996. The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J. Virol. 70, 8477–8484.

    PubMed  CAS  Google Scholar 

  31. Sali D.L., Ingram R., Wendel M., Gupta D., McNemar C., Tsarbopoulos A., Chen J.W., Hong Z., Chase R., Risano C., Zhang R., Yao N., Kwong A.D., Ramanathan L., Le H.V., Weber P. C. 1998. Serine protease of hepatitis C virus expressed in insect cells as the NS3/4A complex. Biochemistry. 37, 3392–3401.

    Article  PubMed  CAS  Google Scholar 

  32. Lundin M., Monne M., Widell A., Von Heijne G., Persson M.A. 2003. Topology of the membrane-associated hepatitis C virus protein NS4B. J. Virol. 77, 5428–5438.

    Article  PubMed  CAS  Google Scholar 

  33. Zheng Y., Gao B., Ye L., Kong L., Jing W., Yang X., Wu Z. 2005. Hepatitis C virus non-structural protein NS4B can modulate an unfolded protein response. J. Microbiol. 43, 529–536.

    PubMed  CAS  Google Scholar 

  34. Macdonald A., Harris M. 2004. Hepatitis C virus NS5A: tales of a promiscuous protein. J. Gen. Virol. 85, 2485–2502.

    Article  PubMed  CAS  Google Scholar 

  35. Tellinghuisen T.L., Marcotrigiano J., Gorbalenya A.E., Rice C.M. 2004. The NS5A protein of hepatitis C virus is a zinc metalloprotein. J. Biol. Chem. 279, 48576–48587.

    Article  PubMed  CAS  Google Scholar 

  36. Waris G., Sarker S., Siddiqui A. 2004. Two-step affinity purification of the hepatitis C virus ribonucleoprotein complex. RNA. 10, 321–329.

    Article  PubMed  CAS  Google Scholar 

  37. Arima N., Kao C.Y., Licht T., Padmanabhan R., Sasaguri Y., Padmanabhan R. 2001. Modulation of cell growth by the hepatitis C virus nonstructural protein NS5A. J. Biol. Chem. 276, 12675–12684.

    Article  PubMed  CAS  Google Scholar 

  38. Gong G., Waris G., Tanveer R., Siddiqui A. 2001. Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc. Natl. Acad. Sci. U.S.A. 98, 9599–5604.

    Article  PubMed  CAS  Google Scholar 

  39. Francois C., Duverlie G., Rebouillat D., Khorsi H., Castelain S., Blum H.E., Gatignol A., Wychowski C., Moradpour D., Meurs E.F. 2000. Expression of hepatitis C virus proteins interferes with the antiviral action of interferon independently of PKR-mediated control of protein synthesis. J. Virol. 74, 5587–5596.

    Article  PubMed  CAS  Google Scholar 

  40. Lohmann V., Korner F., Herian U., Bartenschlager R. 1997. Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. J. Virol. 71, 8416–8428.

    PubMed  CAS  Google Scholar 

  41. Uchida M., Hino N., Yamanaka T., Fukushima H., Imanishi T., Uchiyama Y., Kodama T., Doi T. 2002. Hepatitis C virus core protein binds to a C-terminal region of NS5B RNA polymerase. Hepatol. Res. 22, 297–306.

    Article  PubMed  CAS  Google Scholar 

  42. Berger K.L., Randall G. 2009. Potential roles for cellular cofactors in hepatitis C virus replication complex formation. Commun. Integr. Biol. 2, 471–473.

    Article  PubMed  Google Scholar 

  43. Piccininni S., Varaklioti A., Nardelli M., Dave B., Raney K.D., McCarthy J.E. 2002. Modulation of the hepatitis C virus RNA-dependent RNA polymerase activity by the non-structural (NS) 3 helicase and the NS4B membrane protein. J. Biol. Chem. 277, 45670–45679.

    Article  PubMed  CAS  Google Scholar 

  44. Ivanov A.V., Tunitskaya V.L., Ivanova O.N., Mitkevich V.A., Prassolov V.S., Makarov A.A., Kukhanova M.K., Kochetkov S.N. 2009. Hepatitis C virus NS5A protein modulates template selection by the RNA polymerase in in vitro system. FEBS Lett. 583, 277–280.

    Article  PubMed  CAS  Google Scholar 

  45. Koike K., Moriya K., Matsuura Y. 2010. Animal models for hepatitis C and related liver disease. Hepatol. Res. 40, 69–82.

    Article  PubMed  CAS  Google Scholar 

  46. Mercer D.F., Schiller D.E., Elliott J.F., Douglas D.N., Hao C., Rinfret A., Addison W.R., Fischer K.P., Churchill T.A., Lakey J.R., Tyrrell D.L., Kneteman N.M. 2001. Hepatitis C virus replication in mice with chimeric human livers. Nature Med. 7, 927–933.

    Article  PubMed  CAS  Google Scholar 

  47. Barth H., Robinet E., Liang T.J., Baumert T.F. 2008. Mouse models for the study of HCV infection and virus-host interactions. J. Hepatol. 49, 134–142.

    Article  PubMed  CAS  Google Scholar 

  48. Choo Q.L., Kuo G., Weiner A.J., Overby L.R., Bradley D.W., Houghton M. 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 244, 359–362.

    Article  PubMed  CAS  Google Scholar 

  49. Lohmann V., Korner F., Koch J., Herian U., Theilmann L., Bartenschlager R. 1999. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science. 285, 110–113.

    Article  PubMed  CAS  Google Scholar 

  50. Blight K.J., McKeating J.A., Marcotrigiano J., Rice C.M. 2003. Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J. Virol. 77, 3181–3190.

    Article  PubMed  CAS  Google Scholar 

  51. Bartenschlager R., Kaul A., Sparacio S. 2003. Replication of the hepatitis C virus in cell culture. Antiviral Res. 60, 91–102.

    Article  PubMed  CAS  Google Scholar 

  52. Lindenbach B.D., Evans M.J., Syder A.J., Wolk B., Tellinghuisen T.L., Liu C.C., Maruyama T., Hynes R.O., Burton D.R., McKeating J.A., Rice C.M. 2005. Complete replication of hepatitis C virus in cell culture. Science. 309, 623–626.

    Article  PubMed  CAS  Google Scholar 

  53. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Krausslich H.G., Mizokami M., Bartenschlager R., Liang T.J. 2005. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Med. 11, 791–796.

    Article  PubMed  CAS  Google Scholar 

  54. Kato T., Furusaka A., Miyamoto M., Date T., Yasui K., Hiramoto J., Nagayama K., Tanaka T., Wakita T. 2001. Sequence analysis of hepatitis C virus isolated from a fulminant hepatitis patient. J. Med. Virol. 64, 334–339.

    Article  PubMed  CAS  Google Scholar 

  55. Kato T., Date T., Miyamoto M., Furusaka A., Tokushige K., Mizokami M., Wakita T. 2003. Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology. 125, 1808–1817.

    Article  PubMed  CAS  Google Scholar 

  56. Salganik R.I. 2001. The benefits and hazards of antioxidants: Controlling apoptosis and other protective mechanisms in cancer patients and the human population. J. Am. Coll. Nutr. 20, 464S–472S.

    PubMed  CAS  Google Scholar 

  57. Chernyak B.V., Izyumov D.S., Lyamzaev K.G., Pashkovskaya A.A., Pletjushkina O.Y., Antonenko Y.N., Sakharov D.V., Wirtz K.W., Skulachev V.P. 2006. Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress. Biochim. Biophys. Acta. 1757, 525–534.

    Article  PubMed  CAS  Google Scholar 

  58. Papa S., Skulachev V.P. 1997. Reactive oxygen species, mitochondria, apoptosis and aging. Mol. Cell. Biochem. 174, 305–319.

    Article  PubMed  CAS  Google Scholar 

  59. Lee J.M., Johnson J.A. 2004. An important role of Nrf2-ARE pathway in the cellular defense mechanism. J. Biochem. Mol. Biol. 37, 139–143.

    PubMed  CAS  Google Scholar 

  60. Aleksunes L.M., Manautou J.E. 2007. Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease. Toxicol. Pathol. 35, 459–473.

    Article  PubMed  CAS  Google Scholar 

  61. Nguyen T., Huang H.C., Pickett C.B. 2000. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J. Biol. Chem. 275, 15466–15473.

    Article  PubMed  CAS  Google Scholar 

  62. Zhang Y., Lucocq J.M., Yamamoto M., Hayes J.D. 2007. The NHB1 (N-terminal homology box 1) sequence in transcription factor Nrf1 is required to anchor it to the endoplasmic reticulum and also to enable its asparagine-glycosylation. Biochem. J. 408, 161–172.

    Article  PubMed  CAS  Google Scholar 

  63. Wang W., Chan J.Y. 2006. Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. J. Biol. Chem. 281, 19676–19687.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang Y., Lucocq J.M., Hayes J.D. 2009. The Nrf1 CNC/bZIP protein is a nuclear envelope-bound transcription factor that is activated by t-butyl hydroquinone but not by endoplasmic reticulum stressors. Biochem. J. 418, 293–310.

    Article  PubMed  CAS  Google Scholar 

  65. Villeneuve N.F., Lau A., Zhang D.D. 2010. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: An insight into cullin-ring ubiquitin ligases. Antioxid. Redox Signal. doi:10.1089/ars.2010.3211.

  66. Ohtsuji M., Katsuoka F., Kobayashi A., Aburatani H., Hayes J.D., Yamamoto M. 2008. Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. J. Biol. Chem. 283, 33554–33562.

    Article  PubMed  CAS  Google Scholar 

  67. Chan J.Y., Kwong M., Lu R., Chang J., Wang B., Yen T.S., Kan Y.W. 1998. Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice. EMBO J. 17, 1779–1787.

    Article  PubMed  CAS  Google Scholar 

  68. Beyer T.A., Xu W., Teupser D., auf dem Keller U., Bugnon P., Hildt E., Thiery J., Kan Y.W., Werner S. 2008. Impaired liver regeneration in Nrf2 knockout mice: Role of ROS-mediated insulin/IGF-1 resistance. EMBO J. 27, 212–223.

    Article  PubMed  CAS  Google Scholar 

  69. Dhakshinamoorthy S., Jaiswal A.K. 2000. Small maf (MafG and MafK) proteins negatively regulate antioxidant response element-mediated expression and antioxidant induction of the NAD(P)H:Quinone oxidoreductase1 gene. J. Biol. Chem. 275, 40134–40141.

    Article  PubMed  CAS  Google Scholar 

  70. Motohashi H., Katsuoka F., Engel J.D., Yamamoto M. 2004. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc. Natl. Acad. Sci. U.S.A. 101, 6379–6384.

    Article  PubMed  CAS  Google Scholar 

  71. Levonen A.L., Landar A., Ramachandran A., Ceaser E.K., Dickinson D.A., Zanoni G., Morrow J.D., Darley-Usmar V.M. 2004. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J. 378, 373–382.

    Article  PubMed  CAS  Google Scholar 

  72. Jaiswal A.K. 2004. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 36, 1199–1207.

    Article  PubMed  CAS  Google Scholar 

  73. Sun Z., Chin Y.E., Zhang D.D. 2009. Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Mol. Cell Biol. 29, 2658–2672.

    Article  PubMed  CAS  Google Scholar 

  74. Menshikova E.B., Tkachev V.O., Zenkov N.K. 2010. Redox-dependent signaling system Nrf2/ARE in inflammation. Mol. Biol. (Moscow). 44, 343–357.

    Article  CAS  Google Scholar 

  75. Reddy P.S., Corley R.B. 1998. Assembly, sorting, and exit of oligomeric proteins from the endoplasmic reticulum. BioEssays. 20, 546–554.

    Article  PubMed  CAS  Google Scholar 

  76. Malhotra J.D., Kaufman R.J. 2007. Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword? Antioxid. Redox Signal. 9, 2277–2293.

    Article  PubMed  CAS  Google Scholar 

  77. Boelens J., Lust S., Offner F., Bracke M.E., Vanhoecke B.W. 2007. Review. The endoplasmic reticulum: A target for new anticancer drugs. In Vivo. 21, 215–226.

    PubMed  CAS  Google Scholar 

  78. Zhang K., Kaufman R.J. 2003. Unfolding the toxicity of cholesterol. Nature Cell Biol. 5, 769–770.

    Article  PubMed  CAS  Google Scholar 

  79. Ma Y., Hendershot L.M. 2001. The unfolding tale of the unfolded protein response. Cell. 107, 827–830.

    Article  PubMed  CAS  Google Scholar 

  80. Shiu R.P., Pouyssegur J., Pastan I. 1977. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 74, 3840–3844.

    Article  PubMed  CAS  Google Scholar 

  81. Gething M.J., Sambrook J. 1992. Protein folding in the cell. Nature. 355, 33–45.

    Article  PubMed  CAS  Google Scholar 

  82. Schroder M., Kaufman R.J. 2005. ER stress and the unfolded protein response. Mutat. Res. 569, 29–63.

    PubMed  Google Scholar 

  83. Pahl H.L., Sester M., Burgert H.G., Baeuerle P.A. 1996. Activation of transcription factor NF-kappaB by the adenovirus E3/19K protein requires its ER retention. J. Cell Biol. 132, 511–522.

    Article  PubMed  CAS  Google Scholar 

  84. Pahl H.L., Baeuerle P.A. 1995. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J. 14, 2580–2588.

    PubMed  CAS  Google Scholar 

  85. Martinon F., Chen X., Lee A.H., Glimcher L.H. 2010. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nature Immunol. 11, 411–418.

    Article  CAS  Google Scholar 

  86. Harding H.P., Zhang Y., Ron D. 1999. Protein translation and folding are coupled by an endoplasmicreticulum-resident kinase. Nature. 397, 271–274.

    Article  PubMed  CAS  Google Scholar 

  87. Shi Y., Vattem K.M., Sood R., An J., Liang J., Stramm L., Wek R.C. 1998. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell Biol. 18, 7499–7509.

    PubMed  CAS  Google Scholar 

  88. Bertolotti A., Zhang Y., Hendershot L.M., Harding H.P., Ron D. 2000. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biol. 2, 326–332.

    Article  PubMed  CAS  Google Scholar 

  89. Okada T., Yoshida H., Akazawa R., Negishi M., Mori K. 2002. Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem. J. 366, 585–594.

    Article  PubMed  CAS  Google Scholar 

  90. Harding H.P., Novoa I., Zhang Y., Zeng H., Wek R., Schapira M., Ron D. 2000. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell. 6, 1099–1108.

    Article  PubMed  CAS  Google Scholar 

  91. Vattem K.M., Wek R.C. 2004. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 101, 11269–11274.

    Article  PubMed  CAS  Google Scholar 

  92. Cullinan S.B., Diehl J.A. 2004. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem. 279, 20108–20117.

    Article  PubMed  CAS  Google Scholar 

  93. Ma Y., Brewer J.W., Diehl J.A., Hendershot L.M. 2002. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J. Mol. Biol. 318, 1351–1365.

    Article  PubMed  CAS  Google Scholar 

  94. Hong M., Luo S., Baumeister P., Huang J.M., Gogia R.K., Li M., Lee A. S. 2004. Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J. Biol. Chem. 279, 11354–11363.

    Article  PubMed  CAS  Google Scholar 

  95. Yoshida H., Okada T., Haze K., Yanagi H., Yura T., Negishi M., Mori K. 2000. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell Biol. 20, 6755–6767.

    Article  PubMed  CAS  Google Scholar 

  96. Yoshida H., Matsui T., Yamamoto A., Okada T., Mori K. 2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107, 881–891.

    Article  PubMed  CAS  Google Scholar 

  97. Ye J., Rawson R.B., Komuro R., Chen X., Dave U.P., Prywes R., Brown M.S., Goldstein J.L. 2000. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell. 6, 1355–1364.

    Article  PubMed  CAS  Google Scholar 

  98. Yoshida H., Haze K., Yanagi H., Yura T., Mori K. 1998. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741–33749.

    Article  PubMed  CAS  Google Scholar 

  99. Kokame K., Kato H., Miyata T. 2001. Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J. Biol. Chem. 276, 9199–9205.

    Article  PubMed  CAS  Google Scholar 

  100. Kohno K. 2007. How transmembrane proteins sense endoplasmic reticulum stress. Antioxid. Redox Signal. 9, 2295–2303.

    Article  PubMed  CAS  Google Scholar 

  101. Liu C.Y., Schroder M., Kaufman R.J. 2000. Ligandindependent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J. Biol. Chem. 275, 24881–24885.

    Article  PubMed  CAS  Google Scholar 

  102. Credle J.J., Finer-Moore J.S., Papa F.R., Stroud R.M., Walter P. 2005. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 102, 18773–18784.

    Article  PubMed  CAS  Google Scholar 

  103. Calfon M., Zeng H., Urano F., Till J.H., Hubbard S.R., Harding H.P., Clark S.G., Ron D. 2002. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 415, 92–96.

    Article  PubMed  CAS  Google Scholar 

  104. Lee K., Tirasophon W., Shen X., Michalak M., Prywes R., Okada T., Yoshida H., Mori K., Kaufman R.J. 2002. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16, 452–466.

    Article  PubMed  CAS  Google Scholar 

  105. Yamamoto K., Yoshida H., Kokame K., Kaufman R.J., Mori K. 2004. Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. J. Biochem. 136, 343–350.

    Article  PubMed  CAS  Google Scholar 

  106. Lee A.H., Iwakoshi N.N., Glimcher L.H. 2003. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell Biol. 23, 7448–7459.

    Article  PubMed  CAS  Google Scholar 

  107. Ng D.T., Spear E.D., Walter P. 2000. The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J. Cell Biol. 150, 77–88.

    Article  PubMed  CAS  Google Scholar 

  108. Yoshida H., Matsui T., Hosokawa N., Kaufman R.J., Nagata K., Mori K. 2003. A time-dependent phase shift in the mammalian unfolded protein response. Dev. Cell. 4, 265–271.

    Article  PubMed  CAS  Google Scholar 

  109. Yan W., Frank C.L., Korth M.J., Sopher B.L., Novoa I., Ron D., Katze M.G. 2002. Control of PERK eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc. Natl. Acad. Sci. U.S.A. 99, 15920–15925.

    Article  PubMed  CAS  Google Scholar 

  110. Asselah T., Bieche I., Mansouri A., Laurendeau I., Cazals-Hatem D., Feldmann G., Bedossa P., Paradis V., Martinot-Peignoux M., Lebrec D., Guichard C., Ogier-Denis E., Vidaud M., Tellier Z., Soumelis V., Marcellin P., Moreau R. 2010. In vivo hepatic endoplasmic reticulum stress in patients with chronic hepatitis C. J. Pathol. 221, 264–274.

    Article  PubMed  CAS  Google Scholar 

  111. Gale M.J., Jr., Korth M.J., Tang N.M., Tan S.L., Hopkins D.A., Dever T.E., Polyak S.J., Gretch D.R., Katze M.G. 1997. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology. 230, 217–227.

    Article  PubMed  CAS  Google Scholar 

  112. Taylor D.R., Shi S.T., Romano P.R., Barber G.N., Lai M.M. 1999. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science. 285, 107–110.

    Article  PubMed  CAS  Google Scholar 

  113. Pavio N., Romano P.R., Graczyk T.M., Feinstone S.M., Taylor D.R. 2003. Protein synthesis and endoplasmic reticulum stress can be modulated by the hepatitis C virus envelope protein E2 through the eukaryotic initiation factor 2-alpha kinase PERK. J. Virol. 77, 3578–3585.

    Article  PubMed  CAS  Google Scholar 

  114. Tardif K.D., Mori K., Kaufman R.J., Siddiqui A. 2004. Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response. J. Biol. Chem. 279, 17158–17164.

    Article  PubMed  CAS  Google Scholar 

  115. Kaufman R.J. 1999. Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233.

    Article  PubMed  CAS  Google Scholar 

  116. Tardif K.D., Siddiqui A. 2003. Cell surface expression of major histocompatibility complex class I molecules is reduced in hepatitis C virus subgenomic repliconexpressing cells. J. Virol. 77, 11644–11650.

    Article  PubMed  CAS  Google Scholar 

  117. Reimold A.M., Etkin A., Clauss I., Perkins A., Friend D.S., Zhang J., Horton H.F., Scott A., Orkin S.H., Byrne M.C., Grusby M.J., Glimcher L.H. 2000. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14, 152–157.

    PubMed  CAS  Google Scholar 

  118. Kishimoto T., Kokura K., Ohkawa N., Makino Y., Yoshida M., Hirohashi S., Niwa S., Muramatsu M., Tamura T. 1998. Enhanced expression of a new class of liver-enriched b-Zip transcription factors, hepatocarcinogenesis-related transcription factor, in hepatocellular carcinomas of rats and humans. Cell Growth Diff. 9, 337–344.

    PubMed  CAS  Google Scholar 

  119. Shuda M., Kondoh N., Imazeki N., Tanaka K., Okada T., Mori K., Hada A., Arai M., Wakatsuki T., Matsubara O., Yamamoto N., Yamamoto M. 2003. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J. Hepatol. 38, 605–614.

    Article  PubMed  CAS  Google Scholar 

  120. Dionisio N., Garcia-Mediavilla M.V., Sanchez-Campos S., Majano P.L., Benedicto I., Rosado J.A., Salido G.M., Gonzalez-Gallego J. 2009. Hepatitis C virus NS5A and core proteins induce oxidative stressmediated calcium signalling alterations in hepatocytes. J. Hepatol. 50, 872–882.

    Article  PubMed  CAS  Google Scholar 

  121. Korenaga M., Okuda M., Otani K., Wang T., Li Y., Weinman S.A. 2005. Mitochondrial dysfunction in hepatitis C. J. Clin. Gastroenterol. 39, S162–S166.

    Article  PubMed  CAS  Google Scholar 

  122. Okuda M., Li K., Beard M.R., Showalter L.A., Scholle F., Lemon S.M., Weinman S.A. 2002. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology. 122, 366–375.

    Article  PubMed  CAS  Google Scholar 

  123. de Mochel N.S., Seronello S., Wang S.H., Ito C., Zheng J.X., Liang T.J., Lambeth J.D., Choi J. 2010. Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology. 52, 47–59.

    PubMed  Google Scholar 

  124. Boudreau H.E., Emerson S.U., Korzeniowska A., Jendrysik M.A., Leto T.L. 2009. Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor beta-dependent manner: A new contributor to HCV-induced oxidative stress. J. Virol. 83, 12934–12946.

    Article  PubMed  CAS  Google Scholar 

  125. Santos C.X., Tanaka L.Y., Wosniak J.J., Laurindo F.R. 2009. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: Roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport and nadph oxidase. Antioxid. Redox Signal. 11, 2409–2427.

    Article  PubMed  CAS  Google Scholar 

  126. Mahmood S., Kawanaka M., Kamei A., Izumi A., Nakata K., Niiyama G., Ikeda H., Hanano S., Suehiro M., Togawa K., Yamada G. 2004. Immunohistochemical evaluation of oxidative stress markers in chronic hepatitis C. Antioxid. Redox Signal. 6, 19–24.

    Article  PubMed  CAS  Google Scholar 

  127. Mitsuyoshi H., Itoh Y., Sumida Y., Minami M., Yasui K., Nakashima T., Okanoue T. 2008. Evidence of oxidative stress as a cofactor in the development of insulin resistance in patients with chronic hepatitis C. Hepatol. Res. 38, 348–353.

    Article  PubMed  CAS  Google Scholar 

  128. Di Bona D., Cippitelli M., Fionda C., Camma C., Licata A., Santoni A., Craxi A. 2006. Oxidative stress inhibits IFN-alpha-induced antiviral gene expression by blocking the JAK-STAT pathway. J. Hepatol. 45, 271–279.

    Article  PubMed  CAS  Google Scholar 

  129. Nishina S., Hino K., Korenaga M., Vecchi C., Pietrangelo A., Mizukami Y., Furutani T., Sakai A., Okuda M., Hidaka I., Okita K., Sakaida I. 2008. Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription. Gastroenterology. 134, 226–238.

    Article  PubMed  CAS  Google Scholar 

  130. Fujita N., Horiike S., Sugimoto R., Tanaka H., Iwasa M., Kobayashi Y., Hasegawa K., Ma N., Kawanishi S., Adachi Y., Kaito M. 2007. Hepatic oxidative DNA damage correlates with iron overload in chronic hepatitis C patients. Free Radic. Biol. Med. 42, 353–362.

    Article  PubMed  CAS  Google Scholar 

  131. Waris G., Siddiqui A. 2005. Hepatitis C virus stimulates the expression of cyclooxygenase-2 via oxidative stress: Role of prostaglandin E2 in RNA replication. J. Virol. 79, 9725–9734.

    Article  PubMed  CAS  Google Scholar 

  132. Okamoto T., Sanda T., Asamitsu K. 2007. NF-kappa B signaling and carcinogenesis. Curr. Pharm. Des. 13, 447–462.

    Article  PubMed  CAS  Google Scholar 

  133. Bowman T., Garcia R., Turkson J., Jove R. 2000. STATs in oncogenesis. Oncogene. 19, 2474–2488.

    Article  PubMed  CAS  Google Scholar 

  134. Waris G., Livolsi A., Imbert V., Peyron J.F., Siddiqui A. 2003. Hepatitis C virus NS5A and subgenomic replicon activate NF-kappaB via tyrosine phosphorylation of IkappaBalpha and its degradation by calpain protease. J. Biol. Chem. 278, 40778–40787.

    Article  PubMed  CAS  Google Scholar 

  135. Burdette D., Olivarez M., Waris G. 2010. Activation of transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway. J. Gen. Virol. 91, 681–690.

    Article  PubMed  CAS  Google Scholar 

  136. Levent G., Ali A., Ahmet A., Polat E.C., Aytac C., Ayse E., Ahmet S. 2006. Oxidative stress and antioxidant defense in patients with chronic hepatitis C patients before and after pegylated interferon alfa-2b plus ribavirin therapy. J. Transl. Med. 4, 25. doi: 10.1186/1479-5876-4-25.

    Article  PubMed  CAS  Google Scholar 

  137. Swietek K., Juszczyk J. 1997. Reduced glutathione concentration in erythrocytes of patients with acute and chronic viral hepatitis. J. Viral Hepat. 4, 139–141.

    PubMed  CAS  Google Scholar 

  138. Barbaro G., Di Lorenzo G., Soldini M., Parrotto S., Bellomo G., Belloni G., Grisorio B., Barbarini G. 1996. Hepatic glutathione deficiency in chronic hepatitis C: Quantitative evaluation in patients who are HIV positive and HIV negative and correlations with plasmatic and lymphocytic concentrations and with the activity of the liver disease. Am. J. Gastroenterol. 91, 2569–2573.

    PubMed  CAS  Google Scholar 

  139. Hinoshita E., Taguchi K., Inokuchi A., Uchiumi T., Kinukawa N., Shimada M., Tsuneyoshi M., Sugimachi K., Kuwano M. 2001. Decreased expression of an ATP-binding cassette transporter, MRP2, in human livers with hepatitis C virus infection. J. Hepatol. 35, 765–773.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Additional information

Original Russian Text © O.A. Smirnova, A.V. Ivanov, O.N. Ivanova, V.T. Valuev-Elliston, S.N. Kochetkov, 2011, published in Molekulyarnaya Biologiya, 2011, Vol. 45, No. 1, pp. 127–141.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnova, O.A., Ivanov, A.V., Ivanova, O.N. et al. Cell defense systems against oxidative stress and endoplasmic reticulum stress: Mechanisms of regulation and the effect of hepatitis C virus. Mol Biol 45, 110–122 (2011). https://doi.org/10.1134/S0026893311010122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311010122

Keywords

Navigation