Skip to main content
Log in

Innate mechanisms of viral recognition

  • Innate Immunity. Virus Evasion Strategies
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Viruses are obligate parasites which can infect cells of all living organisms. Multiple antiviral defense mechanisms appeared early in the evolution of the immune system. Higher vertebrates possess the most complex antiviral immunity based on both innate and adoptive immune responses. However, a majority of living organisms, including plants and invertebrates, rely exclusively on innate immune mechanisms for protection against viral infections. There are some striking similarities in several components of innate immune recognition in mammals, plants, and insects suggesting that these signaling cascades are highly conserved in the evolution of the immune system. This review summarizes recent advances in the field of innate immune recognition of viruses, with a focus on pattern-recognition receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IL:

interleukin

PRR:

pathogen recognition receptor

TLR:

Toll-like receptor

TIR:

domain-domain common for Toll and interleukin-1 receptors

NB:

nucleotide binding domain

LRR:

leucine rich repeat

RLR:

RIG-1-like receptor

PAMP:

pathogen-associated molecular pattern

CARD:

caspase activation and recruitment domain

MAVS:

mitochondrial antiviral signaling protein

TBK:

1-TANK-binding kinase1

NLR:

NOD-like receptor

TRIF:

TIR-domain-containing adapter-inducing interferon-β

ASC:

apoptotic speck-containing protein with a CARD

MICB:

MHC class I-polypeptide related sequence B

CMV:

cytomegalovirus

References

  1. Hoffmann J.A. 2003. The immune response of Drosophila. Nature. 426, 33–38.

    Article  PubMed  CAS  Google Scholar 

  2. Caplan J., Padmanabhan M., Dinesh-Kumar S.P. 2008. Plant NB-LRR immune receptors: From recognition to transcriptional reprogramming. Cell Host Microbe. 3, 126–135.

    Article  PubMed  CAS  Google Scholar 

  3. Deddouche S., Matt N., Budd A., Mueller S., Kemp C., Galiana-Arnoux D., Dostert C., Antoniewski C., Hoffmann J.A., Imler J.L. 2008. The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in drosophila. Nature Immunol. 9, 1425–1432.

    Article  CAS  Google Scholar 

  4. Aliyari R., Ding S.W. 2009. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol. Rev. 227, 176–188.

    Article  PubMed  CAS  Google Scholar 

  5. Saleh M.C., Tassetto M., van Rij R.P., Goic B., Gausson V., Berry B., Jacquier C., Antoniewski C., Andino R. 2009. Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature. 458, 346–350.

    Article  PubMed  CAS  Google Scholar 

  6. Pancer Z., Amemiya C.T., Ehrhardt G.R., Ceitlin J., Gartland G.L., Cooper M.D. 2004. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature. 430, 174–180.

    Article  PubMed  CAS  Google Scholar 

  7. Kawai T., Akira S. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunol. 11, 373–384.

    Article  CAS  Google Scholar 

  8. Iwasaki A., Medzhitov R. 2010. Regulation of adaptive immunity by the innate immune system. Science. 327, 291–295.

    Article  PubMed  CAS  Google Scholar 

  9. Kawai T., Akira S. 2006. Innate immune recognition of viral infection. Nature Immunol. 7, 131–137.

    Article  CAS  Google Scholar 

  10. Ting J.P., Duncan J.A., Lei Y. 2010. How the noninflammasome NLRs function in the innate immune system. Science. 327, 286–290.

    Article  PubMed  CAS  Google Scholar 

  11. Moore C.B., Bergstralh D.T., Duncan J.A., Lei Y., Morrison T.E., Zimmermann A.G., Accavitti-Loper M.A., Madden V.J., Sun L., Ye Z., Lich J.D., Heise M.T., Chen Z., Ting J.P. 2008. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature. 451, 573–577.

    Article  PubMed  CAS  Google Scholar 

  12. Ewald S.E., Lee B.L., Lau L., Wickliffe K.E., Shi G.P., Chapman H.A., Barton G.M. 2008. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature. 456, 658–662.

    Article  PubMed  CAS  Google Scholar 

  13. Heil F., Hemmi H., Hochrein H., Ampenberger F., Kirschning C., Akira S., Lipford G., Wagner H., Bauer S. 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 303, 1526–1529.

    Article  PubMed  CAS  Google Scholar 

  14. Yamamoto M., Sato S., Mori K., Hoshino K., Takeuchi O., Takeda K., Akira S. 2002. Cutting edge: A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672.

    PubMed  CAS  Google Scholar 

  15. Oshiumi H., Matsumoto M., Funami K., Akazawa T., Seya T. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nature Immunol. 4, 161–167.

    Article  CAS  Google Scholar 

  16. Yamamoto M., Sato S., Hemmi H., Hoshino K., Kaisho T., Sanjo H., Takeuchi O., Sugiyama M., Okabe M., Takeda K., Akira S. 2003. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 301, 640–643.

    Article  PubMed  CAS  Google Scholar 

  17. Sharma S., tenOever B.R., Grandvaux N., Zhou G.P., Lin R., Hiscott J. 2003. Triggering the interferon antiviral response through an IKK-related pathway. Science. 300, 1148–1151.

    Article  PubMed  CAS  Google Scholar 

  18. Fitzgerald K.A., McWhirter S.M., Faia K.L., Rowe D.C., Latz E., Golenbock D.T., Coyle A.J., Liao S.M., Maniatis T. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunol. 4, 491–496.

    Article  CAS  Google Scholar 

  19. Hemmi H., Kaisho T., Takeda K., Akira S. 2003. The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J. Immunol. 170, 3059–3064.

    PubMed  CAS  Google Scholar 

  20. Hoshino K., Kaisho T., Iwabe T., Takeuchi O., Akira S. 2002. Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation. Int. Immunol. 14, 1225–1231.

    Article  PubMed  CAS  Google Scholar 

  21. Uematsu S., Sato S., Yamamoto M., Hirotani T., Kato H., Takeshita F., Matsuda M., Coban C., Ishii K.J., Kawai T., Takeuchi O., Akira S. 2005. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. J. Exp. Med. 201, 915–923.

    Article  PubMed  CAS  Google Scholar 

  22. Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., Taira K., Akira S., Fujita T. 2004. The RNA helicase RIG-1 has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunol. 5, 730–737.

    Article  CAS  Google Scholar 

  23. Andrejeva J., Childs K.S., Young D.F., Carlos T.S., Stock N., Goodbourn S., Randall R.E. 2004. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc. Natl. Acad. Sci. USA. 101, 17264–17269.

    Article  PubMed  CAS  Google Scholar 

  24. Hemmi H., Takeuchi O., Sato S., Yamamoto M., Kaisho T., Sanjo H., Kawai T., Hoshino K., Takeda K., Akira S. 2004. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199, 1641–1650.

    Article  PubMed  CAS  Google Scholar 

  25. Perry A.K., Chow E.K., Goodnough J.B., Yeh W.C., Cheng G. 2004. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J. Exp. Med. 199, 1651–1658.

    Article  PubMed  CAS  Google Scholar 

  26. Pichlmair A., Reis e Sousa C. 2007. Innate recognition of viruses. Immunity. 27, 370–383.

    Article  PubMed  CAS  Google Scholar 

  27. Poeck H., Bscheider M., Gross O., Finger K., Roth S., Rebsamen M., Hannesschlager N., Schlee M., Rothenfusser S., Barchet W., Kato H., Akira S., Inoue S., Endres S., Peschel C., Hartmann G., Hornung V., Ruland J. 2010. Recognition of RNA virus by RIG-1 results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nature Immunol. 11, 63–69.

    Article  CAS  Google Scholar 

  28. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii K.J., Yamaguchi O., Otsu K., Tsujimura T., Koh C.S., Reis e Sousa C., Matsuura Y., Fujita T., Akira S. 2006. Differential roles of MDA5 and RIG-1 helicases in the recognition of RNA viruses. Nature. 441, 101–105.

    Article  PubMed  CAS  Google Scholar 

  29. Loo Y.M., Fornek J., Crochet N., Bajwa G., Perwitasari O., Martinez-Sobrido L., Akira S., Gill M.A., Garcia-Sastre A., Katze M.G., Gale M., Jr. 2008. Distinct RIG-1 and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82, 335–345.

    Article  PubMed  CAS  Google Scholar 

  30. Satoh T., Kato H., Kumagai Y., Yoneyama M., Sato S., Matsushita K., Tsujimura T., Fujita T., Akira S., Takeuchi O. 2010. LGP2 is a positive regulator of RIG-1- and MDA5-mediated antiviral responses. Proc. Natl. Acad. Sci. USA. 107, 1512–1517.

    Article  PubMed  CAS  Google Scholar 

  31. Hornung V., Ellegast J., Kim S., Brzozka K., Jung A., Kato H., Poeck H., Akira S., Conzelmann K.K., Schlee M., Endres S., Hartmann G. 2006. 5′-Triphosphate RNA is the ligand for RIG-1. Science. 314, 994–997.

    Article  PubMed  Google Scholar 

  32. Pichlmair A., Schulz O., Tan C.P., Rehwinkel J., Kato H., Takeuchi O., Akira S., Way M., Schiavo G., Reis e Sousa C. 2009. Activation of MDA5 requires higher-order RNA structures generated during virus infection. J. Virol. 83, 10761–10769.

    Article  PubMed  CAS  Google Scholar 

  33. Takahasi K., Yoneyama M., Nishihori T., Hirai R., Kumeta H., Narita R., Gale M., Jr., Inagaki F., Fujita T. 2008. Nonself RNA-sensing mechanism of RIG-1 helicase and activation of antiviral immune responses. Mol. Cell. 29, 428–440.

    Article  PubMed  CAS  Google Scholar 

  34. Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., Matsushita K., Hiiragi A., Dermody T.S., Fujita T., Akira S. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601–1610.

    Article  PubMed  CAS  Google Scholar 

  35. Malathi K., Dong B., Gale M., Jr., Silverman R.H. 2007. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature. 448, 816–819.

    Article  PubMed  CAS  Google Scholar 

  36. Rehwinkel J., Tan C.P., Goubau D., Schulz O., Pichlmair A., Bier K., Robb N., Vreede F., Barclay W., Fodor E., Reis e Sousa C. 2010. RIG-1 detects viral genomic RNA during negative-strand RNA virus infection. Cell. 140, 397–408.

    Article  PubMed  CAS  Google Scholar 

  37. Rehwinkel J., Reis e Sousa C. 2010. RIGorous detection: Exposing virus through RNA sensing. Science. 327, 284–286.

    Article  PubMed  CAS  Google Scholar 

  38. Chiu Y.H., Macmillan J.B., Chen Z.J. 2009. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-1 pathway. Cell. 138, 576–591.

    Article  PubMed  CAS  Google Scholar 

  39. Ablasser A., Bauernfeind F., Hartmann G., Latz E., Fitzgerald K.A., Hornung V. 2009. RIG-1-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nature Immunol. 10, 1065–1072.

    Article  CAS  Google Scholar 

  40. Burckstummer T., Baumann C., Bluml S., Dixit E., Durnberger G., Jahn H., Planyavsky M., Bilban M., Colinge J., Bennett K.L., Superti-Furga G. 2009. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nature Immunol. 10, 266–272.

    Article  CAS  Google Scholar 

  41. Fernandes-Alnemri T., Yu J.W., Datta P., Wu J., Alnemri E.S. 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 458, 509–513.

    Article  PubMed  CAS  Google Scholar 

  42. Roberts T.L., Idris A., Dunn J.A., Kelly G.M., Burnton C.M., Hodgson S., Hardy L.L., Garceau V., Sweet M.J., Ross I.L., Hume D.A., Stacey K.J. 2009. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 323, 1057–1060.

    Article  PubMed  CAS  Google Scholar 

  43. Takaoka A., Wang Z., Choi M.K., Yanai H., Negishi H., Ban T., Lu Y., Miyagishi M., Kodama T., Honda K., Ohba Y., Taniguchi T. 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 448, 501–505.

    Article  PubMed  CAS  Google Scholar 

  44. Xu L.G., Wang Y.Y., Han K.J., Li L.Y., Zhai Z., Shu H.B. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol. Cell. 19, 727–740.

    Article  PubMed  CAS  Google Scholar 

  45. Seth R.B., Sun L., Ea C.K., Chen Z.J. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell. 122, 669–682.

    Article  PubMed  CAS  Google Scholar 

  46. Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H., Ishii K.J., Takeuchi O., Akira S. 2005. IPS-1, an adaptor triggering RIG-1- and Mda5-mediated type I interferon induction. Nature Immunol. 6, 981–988.

    Article  CAS  Google Scholar 

  47. Meylan E., Curran J., Hofmann K., Moradpour D., Binder M., Bartenschlager R., Tschopp J. 2005. Cardif is an adaptor protein in the RIG-1 antiviral pathway and is targeted by hepatitis C virus. Nature. 437, 1167–1172.

    Article  PubMed  CAS  Google Scholar 

  48. Sabbah A., Chang T.H., Harnack R., Frohlich V., Tominaga K., Dube P.H., Xiang Y., Bose S. 2009. Activation of innate immune antiviral responses by Nod2. Nature Immunol. 10, 1073–1080.

    Article  CAS  Google Scholar 

  49. Dugan J.W., Albor A., David L., Fowlkes J., Blackledge M.T., Martin T.M., Planck S.R., Rosenzweig H.L., Rosenbaum J.T., Davey M. P. 2009. Nucleotide oligomerization domain-2 interacts with 2′-5′-oligoadenylate synthetase type 2 and enhances RNase-L function in THP-1 cells. Mol. Immunol. 47, 560–566.

    Article  PubMed  CAS  Google Scholar 

  50. Onoguchi K., Yoneyama M., Takemura A., Akira S., Taniguchi T., Namiki H., Fujita T. 2007. Viral infections activate types I and III interferon genes through a common mechanism. J. Biol. Chem. 282, 7576–7581.

    Article  PubMed  CAS  Google Scholar 

  51. Haller O., Kochs G., Weber F. 2007. Interferon, Mx, and viral countermeasures. Cytokine Growth Factor Rev. 18, 425–433.

    Article  PubMed  CAS  Google Scholar 

  52. Malmgaard L. 2004. Induction and regulation of IFNs during viral infections. J. Interferon Cytokine Res. 24, 439–454.

    Article  PubMed  CAS  Google Scholar 

  53. Samuel C.E. 2001. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809.

    Article  PubMed  CAS  Google Scholar 

  54. Honda K., Takaoka A., Taniguchi T. 2006. Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity. 25, 349–360.

    Article  PubMed  CAS  Google Scholar 

  55. Lanier L.L. 2008. Evolutionary struggles between NK cells and viruses. Nature Rev. Immunol. 8, 259–268.

    Article  CAS  Google Scholar 

  56. Ahlenstiel G., Martin M.P., Gao X., Carrington M., Rehermann B. 2008. Distinct KIR/HLA compound genotypes affect the kinetics of human antiviral natural killer cell responses. J. Clin. Invest. 118, 1017–1026.

    PubMed  CAS  Google Scholar 

  57. Fehniger T.A., Cai S.F., Cao X., Bredemeyer A.J., Presti R.M., French A.R., Ley T.J. 2007. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity. 26, 798–811.

    Article  PubMed  CAS  Google Scholar 

  58. Sivori S. 2004. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc. Natl. Acad. Sci. USA. 101, 10116–10121.

    Article  PubMed  CAS  Google Scholar 

  59. Schmidt K.N. 2004. APC-independent activation of NK cells by the Toll-like receptor 3 agonist double-stranded RNA. J. Immunol. 172, 138–143.

    PubMed  CAS  Google Scholar 

  60. Zhang S.Y. 2007. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 317, 1522–1527.

    Article  PubMed  CAS  Google Scholar 

  61. Hansen S.G., Powers C.J., Richards R., Ventura A.B., Ford J.C., Siess D., Axthelm M.K., Nelson J.A., Jarvis M.A., Picker L.J., Fruh K. 2010. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science. 328, 102–106.

    Article  PubMed  CAS  Google Scholar 

  62. Pinto A.K., Hill A.B. 2005. Viral interference with antigen presentation to CD8+ T cells: Lessons from cytomegalovirus. Viral Immunol. 18, 434–444.

    Article  PubMed  CAS  Google Scholar 

  63. Muller S., Zocher G., Steinle A., Stehle T. 2010. Structure of the HCMV UL16-MICB complex elucidates select binding of a viral immunoevasin to diverse NKG2D ligands. PLoS Pathog. 6, e1000723.

    Article  PubMed  CAS  Google Scholar 

  64. Ashiru O., Bennett N.J., Boyle L.H., Thomas M., Trowsdale J., Wills M.R. 2009. NKG2D ligand MICA is retained in the cis-Golgi apparatus by human cytomegalovirus protein UL142. J. Virol. 83, 12345–12354.

    Article  PubMed  CAS  Google Scholar 

  65. Tomasec P., Wang E.C., Davison A.J., Vojtesek B., Armstrong M., Griffin C., McSharry B.P., Morris R.J., Llewellyn-Lacey S., Rickards C., Nomoto A., Sinzger C., Wilkinson G.W. 2005. Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nature Immunol. 6, 181–188.

    Article  CAS  Google Scholar 

  66. Prod’homme V., Sugrue D.M., Stanton R.J., Nomoto A., Davies J., Rickards C.R., Cochrane D., Moore M., Wilkinson G.W., Tomasec P. 2010. Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112. J. Gen. Virol. 91, 2034–2039.

    Article  PubMed  CAS  Google Scholar 

  67. Stern-Ginossar N., Elefant N., Zimmermann A., Wolf D.G., Saleh N., Biton M., Horwitz E., Prokocimer Z., Prichard M., Hahn G., Goldman-Wohl D., Greenfield C., Yagel S., Hengel H., Altuvia Y., Margalit H., Mandelboim O. 2007. Host immune system gene targeting by a viral miRNA. Science. 317, 376–381.

    Article  PubMed  CAS  Google Scholar 

  68. Cheng G., Zhong J., Chisari F. V. 2006. Inhibition of dsRNA-induced signaling in hepatitis C virus-infected cells by NS3 protease-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. USA. 103, 8499–8504.

    Article  PubMed  CAS  Google Scholar 

  69. Sumpter R., Jr., Loo Y.M., Foy E., Li K., Yoneyama M., Fujita T., Lemon S.M., Gale M., Jr. 2005. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-1. J. Virol. 79, 2689–2699.

    Article  PubMed  CAS  Google Scholar 

  70. Foy E., Li K., Sumpter R., Jr., Loo Y.M., Johnson C.L., Wang C., Fish P.M., Yoneyama M., Fujita T., Lemon S.M., Gale M., Jr. 2005. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc. Natl. Acad. Sci. USA. 102, 2986–2991.

    Article  PubMed  CAS  Google Scholar 

  71. Arnaud N., Dabo S., Maillard P., Budkowska A., Kalliampakou K.I., Mavromara P., Garcin D., Hugon J., Gatignol A., Akazawa D., Wakita T., Meurs E.F. 2010. Hepatitis C virus controls interferon production through PKR activation. PLoS One. 5, e10575.

    Article  PubMed  CAS  Google Scholar 

  72. Ferreon J.C., Ferreon A.C., Li K., Lemon S.M. 2005. Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease. J. Biol. Chem. 280, 20483–20492.

    Article  PubMed  CAS  Google Scholar 

  73. Li K., Foy E., Ferreon J.C., Nakamura M., Ferreon A.C., Ikeda M., Ray S.C., Gale M., Jr., Lemon S.M. 2005. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl. Acad. Sci. USA. 102, 2992–2997.

    Article  PubMed  CAS  Google Scholar 

  74. Stack J., Haga I.R., Schroder M., Bartlett N.W., Maloney G., Reading P.C., Fitzgerald K.A., Smith G.L., Bowie A.G. 2005. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med. 201, 1007–1018.

    Article  PubMed  CAS  Google Scholar 

  75. Garcia-Sastre A., Biron C.A. 2006. Type 1 interferons and the virus-host relationship: A lesson in detente. Science. 312, 879–882.

    Article  PubMed  CAS  Google Scholar 

  76. Symons J.A., Alcami A., Smith G.L. 1995. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell. 81, 551–560.

    Article  PubMed  CAS  Google Scholar 

  77. Nishio M., Tsurudome M., Ito M., Garcin D., Kolakofsky D., Ito Y. 2005. Identification of paramyxovirus V protein residues essential for STAT protein degradation and promotion of virus replication. J. Virol. 79, 8591–8601.

    Article  PubMed  CAS  Google Scholar 

  78. Rodriguez J.J., Cruz C.D., Horvath C.M. 2004. Identification of the nuclear export signal and STAT-binding domains of the Nipah virus V protein reveals mechanisms underlying interferon evasion. J. Virol. 78, 5358–5367.

    Article  PubMed  CAS  Google Scholar 

  79. Shaw M.L., Garcia-Sastre A., Palese P., Basler C.F. 2004. Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J. Virol. 78, 5633–5641.

    Article  PubMed  CAS  Google Scholar 

  80. Frey K.G., Ahmed C.M., Dabelic R., Jager L.D., Noon-Song E.N., Haider S.M., Johnson H.M., Bigley N.J. 2009. HSV-1-induced SOCS-1 expression in keratinocytes: Use of a SOCS-1 antagonist to block a novel mechanism of viral immune evasion. J. Immunol. 183, 1253–1262.

    Article  PubMed  CAS  Google Scholar 

  81. Gainey M.D., Dillon P.J., Clark K.M., Manuse M.J., Parks G.D. 2008. Paramyxovirus-induced shutoff of host and viral protein synthesis: Role of the P and V proteins in limiting PKR activation. J. Virol. 82, 828–839.

    Article  PubMed  CAS  Google Scholar 

  82. Toroney R., Nallagatla S.R., Boyer J.A., Cameron C.E., Bevilacqua P. C. 2010. Regulation of PKR by HCV IRES RNA: Importance of domain II and NS5A. J. Mol. Biol. 400, 393–412.

    Article  PubMed  CAS  Google Scholar 

  83. Schumann M., Gantke T., Muhlberger E. 2009. Ebola virus VP35 antagonizes PKR activity through its C-terminal interferon inhibitory domain. J. Virol. 83, 8993–8997.

    Article  PubMed  CAS  Google Scholar 

  84. Myskiw C., Arsenio J., van Bruggen R., Deschambault Y., Cao J. 2009. Vaccinia virus E3 suppresses expression of diverse cytokines through inhibition of the PKR, NF-kappaB, and IRF3 pathways. J. Virol. 83, 6757–6768.

    Article  PubMed  CAS  Google Scholar 

  85. Shchelkunov S.N., Blinov V.M., Sandakhchiev L.S. 1993. Genes of variola and vaccinia viruses necessary to overcome the host protective mechanisms. FEBS Lett. 319, 80–83.

    Article  PubMed  CAS  Google Scholar 

  86. Shchelkunov S.N., Resenchuk S.M., Totmenin A.V., Kolykhalov A.A., Frolov I.V., Dryga S.M., Volchkov V.V., Chizhikov V.E., Gutorov V.V., Blinov V.M., Sandakhchiev L.S. 1994. Structure-activity organization of the variola virus genome: 3. Sequencing and analysis of the nucleotide sequence of the conserved region of HindIII-F, -N, and -A fragments of the India 1967 strain genome. Mol. Biol. (Moscow). 28, 265–273.

    Google Scholar 

  87. Shchelkunov S.N., Blinov V.M., Resenchuk S.M., Gutorov V.V., Safronov P.F., Kurmanov R.K., Totmenin A.V., Chizhikov V.E., Marennikova S.S., Sandakhchiev L.S. 1993. Study of the structure-activity organization of the variola virus genome: 2. Analysis of the nucleotide sequence of the HindIII region (C, E, R, Q, K, and H) DNA fragments of the India-1967 strain. Mol. Biol. (Moscow). 27, 797–811.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Drutskaya.

Additional information

Original Russian Text © M.S. Drutskaya, P.V. Belousov, S.A. Nedospasov, 2011, published in Molekulyarnaya Biologiya, 2011, Vol. 45, No. 1, pp. 7–19.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drutskaya, M.S., Belousov, P.V. & Nedospasov, S.A. Innate mechanisms of viral recognition. Mol Biol 45, 5–15 (2011). https://doi.org/10.1134/S0026893311010043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311010043

Keywords

Navigation