Skip to main content
Log in

Selection of DNA aptamers specifically interacting with the fibrillar form of the yeast Sup35 protein

  • Structural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Single-stranded DNA aptamers interacting with fibrils of Saccharomyces cerevisiae Sup35p were obtained by the SELEX procedure. The specificity of interactions with Sup35p was investigated for 10 out of 40 selected aptamers. Nine aptamers were found to bind to the fibrillar but not to the monomeric form of Sup35p. The dissociation constant of the aptamer-fibril complex ranged from 0.1 to 1.0 μM for different aptamers. The aptamers can be used to study the prion transformation of Sup35p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weissmann C. 2004. The state of the prion. Nature Rev. Microbiol. 2, 861–871.

    Article  CAS  Google Scholar 

  2. Horwich A.L., Weissman J.S. 1997. Deadly conformations: Protein misfolding in prion disease. Cell. 89, 499–510.

    Article  PubMed  CAS  Google Scholar 

  3. Ter-Avanesyan M.D., Kushnirov V.V. 1999. Prions: Infective proteins with genetic properties. Biokhimiya. 64, 1638–1647.

    Google Scholar 

  4. Paushkin S.V., Kushnirov V.V., Smirnov V.N., Ter-Avanesyan M.D. 1996. Propagation of the yeast prionlike [PSI +] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15, 3127–3134.

    PubMed  CAS  Google Scholar 

  5. Patino M.M., Liu J.J., Glover J.R., Lindquist S. 1996. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science. 273, 622–626.

    Article  PubMed  CAS  Google Scholar 

  6. Paushkin S.V., Kushnirov V.V., Smirnov V.N., Ter-Avanesyan M.D. 1997. Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: Implications for prion-dependent regulation. Mol. Cell. Biol. 17, 2798–2805.

    PubMed  CAS  Google Scholar 

  7. Ter-Avanesyan M.D., Kushnirov V.V., Dagkesamanskaya A.R., Didichenko S.A., Chernoff Yu.O., Inge-Vechtomov S.G., Smirnov V.N. 1993. Deletion analysis of the SUP35 gene of yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol. 7, 683–692.

    Article  PubMed  CAS  Google Scholar 

  8. Ter-Avanesyan M.D., Dagkesamanskaya A.R., Kushnirov V.V., Smirnov V.N. 1994. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi +] in the yeast Saccharomyces cerevisiae. Genetics. 137, 671–676.

    PubMed  CAS  Google Scholar 

  9. King C.Y., Dias-Avalos R. 2004. Protein-only transmission of three yeast prion strains. Nature. 428, 319–323.

    Article  PubMed  CAS  Google Scholar 

  10. Tanaka M., Chien P., Naber N., Cooke R., Weissman J.S. 2004. Conformational variations in an infectious protein determine prion strain differences. Nature. 428, 323–328.

    Article  PubMed  CAS  Google Scholar 

  11. Kryndushkin D.S., Alexandrov I.M., Ter-Avanesyan M.D., Kushnirov V.V. 2003. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. 278, 49636–49643.

    Article  PubMed  CAS  Google Scholar 

  12. Kushnirov V.V., Alexandrov I.M., Mitkevich O.V., Shkundina I.S., Ter-Avanesyan M.D. 2006. Purification and analysis of prion and amyloid aggregates. Methods. 39, 50–55.

    Article  PubMed  CAS  Google Scholar 

  13. Kul’bachinskii A.V. 2006. Methods for sampling aptamers for protein targets. Usp. Biol. Khim. 46, 193–224.

    Google Scholar 

  14. Glover J.R., Kowal A.S., Schirmer E.C., Patino M.M., Liu J.J., Lindquist S. 1997. Self-seeded fibers formed by Sup35, the protein determinant of [PSI +], a heritable prion-like factor of S. cerevisiae. Cell. 89, 811–819.

    CAS  Google Scholar 

  15. Bianchini M., Radrizzani M., Brocardo M.G., Reyes G.B., Gonzalez Solveyra C., Santa-Coloma T.A. 2001. Specific oligobodies against ERK-2 that recognize both the native and the denatured state of the protein. J. Immunol. Methods. 252, 191–197.

    Article  PubMed  CAS  Google Scholar 

  16. Hicke B.J., Watson S.R., Koenig A., Lynott C.K., Bargatze R.F., Chang Y.F., Ringquist S., Moon-McDermott L., Jennings S., Fitzwater T., Han H.L., Varki N., Albinana I., Willis M. C., Varki A., Parma D. 1996. DNA aptamers block L-selectin function in vivo: Inhibition of human lymphocyte trafficking in SCID mice. J. Clin. Invest. 98, 2688–2692.

    Article  PubMed  CAS  Google Scholar 

  17. Gopinath S. 2007. Methods developed for SELEX. Analyt. Bioanalyt. Chem. 387, 171–182.

    Article  CAS  Google Scholar 

  18. Rhie A., Kirby L., Sayer N., Wellesley R., Disterer P., Sylvester I., Gill A., Hope J., James W., Tahiri-Alaoui A. 2003. Characterization of 2′-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion. J. Biol. Chem. 278, 39697–39705.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Benevolensky.

Additional information

Original Russian Text © E.R. Surina, E.V. Morozkina, A.N. Marchenko, A.A. Antipin, O.V. Mitkevich, V. V. Kushnirov, M.D. Ter-Avanesyan, S.V. Benevolensky, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 4, pp. 682–688.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surina, E.R., Morozkina, E.V., Marchenko, A.N. et al. Selection of DNA aptamers specifically interacting with the fibrillar form of the yeast Sup35 protein. Mol Biol 43, 626–631 (2009). https://doi.org/10.1134/S0026893309040153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309040153

Key words

Navigation