Skip to main content
Log in

Preparation and characterization of mouse embryonic fibroblasts with K72W mutation in somatic cytochrome C gene

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Mouse embryonic fibroblasts (MEF) with point mutation in somatic cytochrome C gene were generated and characterized. It was shown that the substitution of lysine for tryptophan in position 72 (K72W) decreased the proapoptotic functions of cytochrome C in response to staurosporin treatment without disrupting its respiratory functions. The presence of this mutation did not affect the pattern of cytochrome C gene expression or its localization inside the cell. These cell lines therefore represent an interesting model for the study of apoptotic signaling and physiological functions of cytochrome C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skulachev V.P. 2006. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis. 11, 473–485.

    Article  PubMed  CAS  Google Scholar 

  2. Ow Y.P., Green D.R., Hao Z., Mak T.W. 2008. Cytochrome c: Functions beyond respiration. Nature Rev. Mol. Cell Biol. 9, 532–542.

    Article  CAS  Google Scholar 

  3. Vempati U.D., Diaz F., Barrientos A., Narisawa S., Mian A.M., Millan J.L., Boise L.H., Moraes C.T. 2007. Role of cytochrome c in apoptosis: Increased sensitivity to tumor necrosis factor alpha is associated with respiratory defects but not with lack of cytochrome c release. Mol. Cell Biol. 27, 1771–1783.

    Article  PubMed  CAS  Google Scholar 

  4. Hake L.E., Kuemmerle N., Hecht N.B., Kozak C.A., Zou H., Li Y., Liu X., Wang X. 1994. The genes encoding the somatic and testis-specific isotypes of the mouse cytochrome c genes map to paralogous regions of chromosomes 6 and 2. Genomics. 20, 503–505.

    Article  PubMed  CAS  Google Scholar 

  5. Zou H., Li Y., Liu X., Wang X. 1999. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556.

    Article  PubMed  CAS  Google Scholar 

  6. Yu T., Wang X., Purring-Koch C., Wei Y., McLendon G.L. 2001. A mutational epitope for cytochrome C binding to the apoptosis protease activation factor-1. J. Biol. Chem. 276, 13034–13038.

    Article  PubMed  CAS  Google Scholar 

  7. Kluck R.M., Ellerby L.M., Ellerby H.M., Naiem S., Yaffe M.P., Margoliash E., Bredesen D., Mauk A.G., Sherman F., Newmeyer D.D. 2000. Determinants of cytochrome c pro-apoptotic activity: The role of lysine 72 trimethylation. J. Biol. Chem. 275, 16127–16133.

    Article  PubMed  CAS  Google Scholar 

  8. Hao Z., Duncan G.S., Chang C.C., Elia A., Fang M., Wakeham A., Okada H., Calzascia T., Jang Y., You-Ten A., Yeh W.C., Ohashi P., Wang X., Mak T.W. 2005. Specific ablation of the apoptotic functions of cytochrome c reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell. 121, 579–591.

    Article  PubMed  CAS  Google Scholar 

  9. Li K., Li Y., Shelton J.M., Richardson J.A., Spencer E., Chen Z.J., Wang X., Williams R.S. 2000. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell. 101, 389–399.

    Article  PubMed  CAS  Google Scholar 

  10. Cecconi F., Varez-Bolado G., Meyer B.I., Roth K.A., Gruss P. 1998. Apaf1 (CED-4) homolog regulates programmed cell death in mammalian development. Cell. 94, 727–737.

    Article  PubMed  CAS  Google Scholar 

  11. Yoshida H., Kong Y.Y., Yoshida R., Elia A.J., Hakem A., Hakem R., Penninger J.M., Mak T.W. 1998. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell. 94, 739–750.

    Article  PubMed  CAS  Google Scholar 

  12. Kuida K., Haydar T.F., Kuan C.Y., Gu Y., Taya C., Karasuyama H., Su M.S., Rakic P., Flavell R.A. 1998. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell. 94, 325–337.

    Article  PubMed  CAS  Google Scholar 

  13. Hakem R., Hakem A., Duncan G.S., Henderson J.T., Woo M., Soengas M.S., Elia A., de la Pompa J.L., Kagi D., Khoo W., Potter J., Yoshida R., Kaufman S.A., Lowe S.W., Penninger J.M., Mak T.W. 1998. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell. 94, 339–352.

    Article  PubMed  CAS  Google Scholar 

  14. Kuida K., Zheng T.S., Na S., Kuan C., Yang D., Karasuyama H., Rakic P., Flavell R.A. 1996. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature. 384, 368–372.

    Article  PubMed  CAS  Google Scholar 

  15. Woo M., Hakem R., Soengas M.S., Duncan G.S., Shahinian A., Kagi D., Hakem A., McCurrach M., Khoo W., Kaufman S.A., Senaldi G., Howard T., Lowe S.W., Mak T.W. 1998. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes. Dev. 12, 806–819.

    Article  PubMed  CAS  Google Scholar 

  16. Boon-Unge K., Yu Q., Zou T., Zhou A., Govitrapong P., Zhou J. 2007. Emetine regulates the alternative splicing of Bcl-x through a protein phosphatase 1-dependent mechanism. Chem. Biol. 14, 1386–1392.

    Article  PubMed  CAS  Google Scholar 

  17. Kluck R.M., Martin S.J., Hoffman B.M., Zhou J.S., Green D.R., Newmeyer D.D. 1997. Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J. 16, 4639–4649.

    Article  PubMed  CAS  Google Scholar 

  18. Sharonov G.V., Feofanov A.V., Bocharova O.V., Astapova M.V., Dedukhova V.I., Chernyak B.V., Dolgikh D.A., Arseniev A.S., Skulachev V.P., Kirpichnikov M.P. 2005. Comparative analysis of proapoptotic activity of cytochrome c mutants in living cells. Apoptosis. 10, 797–808.

    Article  PubMed  CAS  Google Scholar 

  19. Chertkova R.V., Sharonov G.V., Feofanov A.V., Bocharova O.V., Latypov R.F., Chernyak B.V., Arseniev A.S., Dolgikh D.A., Kirpichnikov M.P. 2008. Proapoptotic activity of cytochrome c in living cells: Effect of K72 substitutions and species differences. Mol. Cell Biochem. 314, 85–93.

    Article  PubMed  CAS  Google Scholar 

  20. King M.P. Attardi G. 1989. Human cells lacking mtDNA: Repopulation with exogenous mitochondria by complementation. Science. 246, 500–503.

    Article  PubMed  CAS  Google Scholar 

  21. Chernyak B.V., Pletjushkina O.Y., Izyumov D.S., Lyamzaev K.G., Avetisyan A.V. 2005. Bioenergetics and death. Biochemistry (Moscow). 2, 240–245.

    Article  Google Scholar 

  22. Abdullaev Z.K., Bodrova M.E., Chernyak B.V., Dolgikh D.A., Kluck R.M., Pereverzev M.O., Arseniev A.S., Efremov R.G., Kirpichnikov M.P., Mokhova E.N., Newmeyer D.D., Roder H., Skulachev V.P. 2002. A cytochrome c mutant with high electron transfer and antioxidant activities but devoid of apoptogenic effect. Biochem. J. 362, 749–754.

    Article  PubMed  CAS  Google Scholar 

  23. Green D.R. 2005. Apoptotic pathways: Ten minutes to dead. Cell. 121, 671–674.

    Article  PubMed  CAS  Google Scholar 

  24. Lavrik I., Golks A., Krammer P.H. 2005. Death receptor signaling. J. Cell Sci. 118, 265–267.

    Article  PubMed  CAS  Google Scholar 

  25. Micheau O. Tschopp J. 2003. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 114, 181–190.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nedospasov.

Additional information

Original Russian Text © I.A. Mufazalov, D.N. Penkov, B.V. Chernyak, O.Y. Pletjushkina, M.Y. Vyssokikh, R.V. Chertkova, M.P. Kirpichnikov, D.A. Dolgikh, A.A. Kruglov, D.V. Kuprash, V.P. Skulachev, S.A. Nedospasov, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 4, pp. 648–656.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mufazalov, I.A., Penkov, D.N., Chernyak, B.V. et al. Preparation and characterization of mouse embryonic fibroblasts with K72W mutation in somatic cytochrome C gene. Mol Biol 43, 596–603 (2009). https://doi.org/10.1134/S0026893309040116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309040116

Key words

Navigation