Skip to main content
Log in

The fine structure of the influenza virus envelope and the concept of transmembrane asymmetry of lateral domains in biomembranes

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The molecular architectures of enveloped viruses provide a demonstrative example of perfectly arranged macromolecular complexes, which are formed via highly specific interactions of all structural components. Virus morphogenesis is a multistep process that depends on the concerted actions of many viral and cell components, as well as a fitted organization of main viral constituents. The virus envelope is composed of a mixture of lipid raft and nonraft domains. The domains are recruited from the host cell membrane as discrete well-ordered lipid-protein units during virus assembly. The raft-like nature of the influenza virus A envelope was visualized using a novel approach of cold solubilization of detergent-resistant membranes from intact influenza virus A virions with a mixture of NP40 and octyl glucopyranoside, two nonionic detergents drastically differing in their raft-solubilizing activities. The virus envelope is apparently an ensemble of flexibly joint platforms, which are composed of surface glycoproteins (hemagglutinin and neuraminidase), the matrix M1 protein, and lipids. The modern concept of the transmembrane asymmetry of lateral domains in biological membranes was used to explain the solubilization mechanism revealed. Based on the principles of this concept, the M1 protein shell was assumed to provide a structure-forming framework to support asymmetrical rafts in the virus envelope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hancock J.F. 2006. Lipid rafts: Contentious only from simplistic standpoint. Nature Rev. Mol. Cell Biol. 7, 456–462.

    Article  CAS  Google Scholar 

  2. Pare C., Lafleur M. 1998. Polymorphism of POPE/cholesterol system: A 2H nuclear magnetic resonance and infrared spectroscopic investigation. Biophys. J. 74, 899–909.

    Article  PubMed  CAS  Google Scholar 

  3. Subczynski W.K., Kusumi A. 2003. Dynamics of raft molecules in the cell and artificial membranes: Approaches by puls EPR spin labeling and single molecule optical microscopy. Biochim. Biophys. Acta. 1610, 231–243.

    Article  PubMed  CAS  Google Scholar 

  4. Kusumi A., Suzuki K. 2005. Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim. Biophys. Acta. 1746, 234–251.

    Article  PubMed  CAS  Google Scholar 

  5. Rao M., Mayor S. 2005. Use of Forster’s resonance energy transfer microscopy to study lipids rafts. Biochim. Biophys. Acta. 1746, 221–233.

    Article  PubMed  CAS  Google Scholar 

  6. Mayor S., Rao M. 2004. Rafts: Scale-dependent, active lipid organization at the cell surface. Traffic. 5, 231–240.

    Article  PubMed  CAS  Google Scholar 

  7. Douglas A.D., Vale R.D. 2005. Single-molecule microscopy reveals membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell. 121, 937–950.

    Article  Google Scholar 

  8. Larson D.R., Gosse J.A., Holowka D.A., Baird B.A., Webb W.W. 2005. Temporally resolved interactions between antigen-stimulated IgE receptor and Lyn kinase on living cells. J. Cell Biol. 171, 527–536.

    Article  PubMed  CAS  Google Scholar 

  9. Fantini J., Garmy N., Mahfoud R., Yahi N. 2002. Lipid rafts: Structure, function and role in HIV, Alzheimer’s and prion diseases. Exp. Rev. Mol. Med. http://www.expertreviews.org/02005392h.htm.

  10. Scheiffele P., Roth M.G., Simons K. 1997. Inretaction of influenza virus hemagglutinin with sphingolipid-cholesterol membrane domains via transmembrane domain. EMBO J. 16, 5501–5508.

    Article  PubMed  CAS  Google Scholar 

  11. Scheiffele P., Rietveld A., Wilk T., Simons K. 1999. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol Chem. 274, 2038–2044.

    Article  PubMed  CAS  Google Scholar 

  12. Jensen M.O., Mouritsen O.G. 2004. Lipids do influence protein function: The hydrophobic matching hypothesis revisited. Biochim. Biophys. Acta. 1666, 205–226.

    Article  PubMed  CAS  Google Scholar 

  13. Mitra K., Ubarretxena-Belandia I., Taguchi T., Warren G., Engelman D.M. 2004. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl. Acad. Sci. USA. 101, 4083–4088.

    Article  PubMed  CAS  Google Scholar 

  14. Pike L.J. 2004. Lipid rafts: Heterogeneity on the high seas. Biochem. J. 378, 281–292.

    Article  PubMed  CAS  Google Scholar 

  15. Chen X., Morris R., Lawrence M.J., Quinn P.J. 2007. The isolation and structure of membrane lipid rafts from rat brain. Biochimie. 89, 192–196.

    Article  PubMed  CAS  Google Scholar 

  16. Marty A., Meanger J., Mills J., Shields B., Ghildyal R. 2004. Association of matrix protein of respiratory syncytial virus with the host cell membrane of infected cells. Arch. Virol. 149, 199–210.

    Article  PubMed  CAS  Google Scholar 

  17. Garner A.E., Smith D.A., Hooper N.M. 2007. Visualization of detergent solubilization of membranes: Implications for the isolation of rafts. Biophys. J. 94, 1326–1340.

    Article  PubMed  Google Scholar 

  18. Delaunay J.-L., Breton M., Trugnan G., Maurice M. 2008. Differential solubilization of inner plasma membrane leaflet components by Lubrol WX and Triton X-100. Biochim. Biophys. Acta. 1778, 105–112.

    Article  PubMed  CAS  Google Scholar 

  19. Chamberlain L.H. 2004. Detergents as tools for the purification and classification of lipid rafts. FEBS Lett. 559, 1–5.

    Article  PubMed  CAS  Google Scholar 

  20. Babiychuk E.B., Draeger A. 2006. Biochemical characterization of detergent-resistant membranes: A systematic approach. Biochem. J. 397, 407–416.

    Article  PubMed  CAS  Google Scholar 

  21. Schuck S., Honsho M., Ekroos K., Shevchenko A., Simons, K. 2003. Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA. 100, 5795–5800.

    Article  PubMed  CAS  Google Scholar 

  22. Garcia-Marcos M., Pochet S., Tandel S., Fontanils U., Astigarraga E., Fernandez-Gonzalez J. A., Kumps A., Marino A., Dehaye J.-P. 2006. Characterization and comparison of raft-like membranes isolated by two different methods from rat submandibular gland cells. Biochim. Biophys. Acta. 1758, 796–806.

    Article  PubMed  CAS  Google Scholar 

  23. Pike L.J., Han X., Gross R.W. 2005. Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: A shotgun lipidomics study. J. Biol. Chem. 280, 26796–26804.

    Article  PubMed  CAS  Google Scholar 

  24. Nayak D.P., Hui E.K.-W., Barman S. 2004. Assembly and budding of influenza virus. Virus Res. 106, 147–165.

    Article  PubMed  CAS  Google Scholar 

  25. Leser G.P., Lamb R.A. 2005. Influenza virus assembly and budding in raft-derived microdomains: A quantitative analysis of the surface distribution of HA, NA, and M2 proteins. Virology. 342, 215–227.

    Article  PubMed  CAS  Google Scholar 

  26. Brügger B., Grass B., Haberkant P., Leibrecht I., Wieland F.T., Kräusslich H.-G. 2006. The HIV lipidome: A raft with an unusual composition. Proc. Natl. Acad. Sci. USA. 103, 2641–2646.

    Article  PubMed  Google Scholar 

  27. Zhang J., Pekosz A., Lamb R.A. 2000. Influenza virus assembly and lipid raft microdomains: A role for the cytoplasmic tails of the spike glycoproteins. J. Virol. 74, 4634–4644.

    Article  PubMed  CAS  Google Scholar 

  28. Takeda M., Leser G.P., Russell C.J., Lamb R.A. 2003. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc. Natl. Acad. Sci. USA. 100, 14610–14617.

    Article  PubMed  CAS  Google Scholar 

  29. Barman S., Ali A., Hui E.K.-W., Adhikary L., Nayak D.P. 2001. Transport of viral proteins to the apical membranes and interaction of matrix protein with glycoproteins in the assembly of influenza viruses. Virus Res. 77, 61–69.

    Article  PubMed  CAS  Google Scholar 

  30. Hui E.K.-W., Barman S., Tang D.H.-P., France B., Nayak D.P. 2006. YRKL sequence of influenza virus M1 functions as the L domain motif and interacts with VPS28 and Cdc42. J. Virol. 80, 2291–2308.

    Article  PubMed  CAS  Google Scholar 

  31. Doyle C., Sambrook J., Gething M.-J. 1986. Analysis of progressive deletions of the transmembrane and cytoplasmic domains of influenza hemagglutinin. J. Cell Biol. 103, 1193–1204.

    Article  PubMed  CAS  Google Scholar 

  32. Armstrong R.T., Kushnir A.S., White J.M. 2000. The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition. J. Cell Biol. 151, 425–437.

    Article  PubMed  CAS  Google Scholar 

  33. Hong Jin, Leser G.P., Jie Zhang, Lamb R.A. 1997. Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J. 16, 1236–1247.

    Article  Google Scholar 

  34. Barman S., Adhikary L., Chakrabarti A.K., Bernas C., Kawaoka Y., Nayak D.P. 2004. Role of transmembrane domain and cytoplasmic tail amino acid sequences of influenza A virus neuraminidase in raft association and virus budding. J. Virol. 78, 5258–5269.

    Article  PubMed  CAS  Google Scholar 

  35. Ruigrok R.W.H., Barge A., Durrer P., Brunner J., Kai Ma, Whittaker G.R. 2000. Membrane interaction of influenza virus M1 protein. Virology. 267, 289–298.

    Article  PubMed  CAS  Google Scholar 

  36. Liu T., Muller J., Ye Z. 2002. Association of influenza virus matrix protein with ribonucleoproteins may control viral growth and morphology. Virology. 304, 89–96.

    Article  PubMed  CAS  Google Scholar 

  37. Elleman C.J., Barclay W.S. 2004. The M1 matrix protein controls the filamentous phenotyupe of influenza A virus. Virology. 321, 144–153

    Article  PubMed  CAS  Google Scholar 

  38. Polozov I.A., Bezrukov L., Gawrisch K., Zimmerberg J. 2008. Progressive ordering with decreasing temperature of the phospholipids of influenza virus. Nature Chem. Biol. 4, 248–255.

    Article  CAS  Google Scholar 

  39. Stegmann T., Morselt H.W., Booy F.P., van Breemen J.F., Scherphof G., Wilschut J. 1987. Functional reconstitution of influenza virus envelopes. EMBO J. 6, 2651–2659.

    PubMed  CAS  Google Scholar 

  40. Radyukhin V., Fedorova N., Ksenofontov A., Serebryakova M., Baratova L. 2008. Cold co-extraction of hemagglutinin and matrix M1 protein from influenza virus A by a combination of non-ionic detergents allows for visualization of the raft-like nature of the virus envelope. Arch. Virol. 153, 1977–1980.

    Article  PubMed  CAS  Google Scholar 

  41. Simons K., Helenius A., Leonard K., Sarvas M., Gething M.J. 1978. Formation of protein micelles from amphiphilic membrane proteins. Proc. Natl. Acad. Sci. USA. 75, 5306–5310.

    Article  PubMed  CAS  Google Scholar 

  42. Nermut M.V., Frank H. 1971. Fine structure of influenza A2 (SINGAPORE) as revealed by negative staining, freeze-drying, and freeze-etching. J. Gen. Virol. 1, 37–51.

    Article  Google Scholar 

  43. Briggs J.A.G., Wilk T., Fuller S.D. 2003. Do lipid rafts mediate virus assembly and pseudotyping? J. Gen. Virol. 84, 757–768.

    Article  PubMed  CAS  Google Scholar 

  44. Zavada J. 1982. The pseudotypic paradox. J. Gen. Virol. 63, 15–24.

    Article  PubMed  Google Scholar 

  45. Huiskonen J.T., Butcher S.J. 2007. Membrane-containing viruses with icosahedrally symmetric capsids. Curr. Opin. Str. Biol. 17, 229–236.

    Article  CAS  Google Scholar 

  46. Lenne P.F., Wawreziniek L., Conchonaud F., Wurtz O., Boned A., Guo X.J., Rigneault H., He H.T., Marguet D. 2006. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J. 25, 3245–3256.

    Article  PubMed  CAS  Google Scholar 

  47. Veatch S.L. 2008. Lipids out of order. Nature Chem. Biol. 4, 225–226.

    Article  CAS  Google Scholar 

  48. Boon J.M., Smith B.D. 2002. Chemical control of phospholipids distribution across bilayer membranes. Med. Res. Rev. 22, 251–281.

    Article  PubMed  CAS  Google Scholar 

  49. Daleke D.L. 2003. Regulation of transbilayer plasma membrane phospholipids asymmetry. J. Lipid Res. 44, 233–242.

    Article  PubMed  CAS  Google Scholar 

  50. Devaux P.F., Morris R. 2004. Transmembrane asymmetry and lateral domains in biological membranes. Traffic. 5, 241–246

    Article  PubMed  CAS  Google Scholar 

  51. Ikeda M., Kihara A., Igarashi Y. 2006. Lipid asymmetry of the eukaryotic plasma membrane: Functions and related enzymes. Biol. Pharm. Bull. 29, 1542–1546.

    Article  PubMed  CAS  Google Scholar 

  52. Janmey P.A., Kinnunen P.K.J. 2006. Biophysical properties of lipids and dynamic membranes. Trends Cell Biol. 16, 538–546.

    Article  PubMed  CAS  Google Scholar 

  53. Hägerstrand H., Holmström T.H., Bobrowska-Hägerstrand M., Eriksson J.E., Isomaa B. 1998. Amphiphileinduced phosphatidylserine exposure in human erythrocytes. Mol. Membr. Biol. 15, 89–95.

    Article  PubMed  Google Scholar 

  54. Baumgart T., Hammond A.T., Sengupta P., Hess S.T., Holowka D.A., Baird B.A., Webb W.W. 2007. Largescale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. USA. 104, 3165–3170.

    Article  PubMed  CAS  Google Scholar 

  55. Collins M.D., Keller S.L. 2008. Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayer. Proc. Natl. Acad. Sci. USA. 105, 124–128.

    Article  PubMed  CAS  Google Scholar 

  56. Kiessling V., Crane J.M., Tamm L.K. 2006. Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Biophys. J. 91, 3313–3326.

    Article  PubMed  CAS  Google Scholar 

  57. Alfalah M., Wetzel G., Fischer I., Busche R., Strechi E.E., Zimmer K.P., Sallmann H.P., Naim H.Y. 2005. A novel type of detergent-resistant membranes may contribute to an early protein sorting event in epithelial cells. J. Biol. Chem. 280, 42636–42646.

    Article  PubMed  CAS  Google Scholar 

  58. Baumgart T., Hess S.T., Webb W.W. 2003. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature. 425, 821–824.

    Article  PubMed  CAS  Google Scholar 

  59. Bayerl T., Klose G., Blank J., Ruckpaul K. 1986. Interaction of nonionic detergents with phospholipids in hepatic microsomes at subsolubilizing concentrations as studied by 31P-NMR. Biochim. Biophys. Acta. 858, 285–293.

    Article  PubMed  CAS  Google Scholar 

  60. Rothman J.E., Tsai D.K., Dawidowicz E.A., Lenard J. 1976. Transbilayer phospholipid asymmetry and its maintenance in the membrane of influenza virus. Biochemistry. 15, 2361–2370.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Radyukhin.

Additional information

Original Russian Text © V.A. Radyukhin, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 4, pp. 579–589.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radyukhin, V.A. The fine structure of the influenza virus envelope and the concept of transmembrane asymmetry of lateral domains in biomembranes. Mol Biol 43, 533–542 (2009). https://doi.org/10.1134/S0026893309040013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309040013

Key words

Navigation