Skip to main content
Log in

Mobile elements and genome evolution

  • General Problems of Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Mobile elements (MEs) are an important component of the genome in all eukaryotes and prokaryotes. MEs are divided into two large classes differing in the mechanism of transposition. Class I MEs are transposed via reverse transcription of their RNA transcripts. Class II MEs code for transposase, which acts at the DNA level and recognizes the ends of the cognate ME. The review considers the distribution of MEs from different classes in various genomes, individual chromosomes, and chromatin types. There is ample evidence for an important role of MEs in the regulation of cell genes and evolution of complex eukaryotic genomes. It is thought that ME invasion and subsequent amplification act as a main morphogenetic factor ensuring adaptation of populations to environmental changes and, in some cases, cause rapid speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ilyin Y.V., Tchurikov N.A., Ananiev E.V., Ryskov A.P., Yenikolopov G.N., Limborska S.A., Maleeva N.E., Gvozdev V.A., Georgiev G.P. 1978. Studies on the DNA fragments of mammals and Drosophila containing structural genes and adjacent sequences. Cold Spring Harbor Symp. Quant. Biol. 42,Pt. 2: 959–969.

    PubMed  Google Scholar 

  2. Finnegan D.J., Rubin G.M., Young M.W., Hogness D.S. 1978. Repeated gene families in Drosophila melanogaster. Cold Spring Harbor Symp. Quant. Biol. 42,Pt 2: 1053–1063.

    PubMed  CAS  Google Scholar 

  3. Orgel L.E., Crick F.H.. 1980. Selfish DNA: The ultimate parasite. Nature. 284, 604–607.

    Article  PubMed  CAS  Google Scholar 

  4. Georgiev G.P. 1984. Mobile genetic elements in animal cells and their biological significance. Eur. J. Biochem. 145, 203–220.

    Article  PubMed  CAS  Google Scholar 

  5. Brosius R.J. 1991. Retroposons: Seeds of evolution. Science. 251, 753–766.

    Article  PubMed  CAS  Google Scholar 

  6. Nekrutenko A., Li W.H. 2001. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 17, 619–621.

    Article  PubMed  CAS  Google Scholar 

  7. Arkhipova I.R., Lyubomirskaya N.V., Ilyin Y.V. 1995. Drosophila Retrotransposons. Austin, TX: RG Landes.

    Google Scholar 

  8. Kidwell M.G., Lisch D.R. 2002. Transposable elements as sources of genomic variation. In: Mobile DNA II, 59–93.

  9. Kazazian H.H. 2004. Mobile elements: Drivers of genome evolution. Science. 303, 1626–1632.

    Article  PubMed  CAS  Google Scholar 

  10. Syomin B.V., Ilyin Yu.V. 2005. Diversity of DKP retrotransposons and mechanisms of their involvement in genome reorganization. Genetika. 41, 542–548.

    Google Scholar 

  11. McClintock B. 1951. Controlling elements and the gene. Cold Spring Harbor Symp. Quant. Biol. 16, 13–47.

    PubMed  CAS  Google Scholar 

  12. Zhang X., Feschotte C., Zhang Q., Jiang N., Eggleston W.B., Wessler S.R. 2001. P instability factor: An active maize transposon system associated with the amplification of Tourist-like MITEs and a new super-family of transposases. Proc. Natl. Acad. Sci. USA. 98, 12572–12577.

    Article  PubMed  CAS  Google Scholar 

  13. Kapitonov V.V., Jurka J. 2001. Rolling-circle transposons in eurkaryotes. Proc. Natl. Acad. Sci. USA. 98, 8714–8719.

    Article  PubMed  CAS  Google Scholar 

  14. Hull R. 2001. Classifying reverse transcribing elements: A proposal and a challenge to the ICTV. Arch. Virol. 146. 2255–2261.

    Article  PubMed  CAS  Google Scholar 

  15. Evgen’ev M.B, Zelentsova A., Shostak N., Kozitsina M., Barsky V., Corces V.G. 1997. Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis in D. virilis. Proc. Natl. Acad. Sci. USA. 94, 196–201.

    Article  PubMed  CAS  Google Scholar 

  16. Arkhipova I.R., Pyatkov K.I., Meselson M., Evgen’ev M.B. 2003. Retroelements containing introns in diverse invertebrate taxa. Nature Genet. 33, 123–124.

    Article  PubMed  CAS  Google Scholar 

  17. Evgen’ev M.B., Arkhipova I.R. 2005. Penelope-like elements — a new class of retroelements: Distribution, function and possible evolutionary significance. Cytogenet. Genome Res. 110, 510–521.

    Article  PubMed  CAS  Google Scholar 

  18. Volff J., Hornung U., Schartl M. 2001. Fish retrotransposons related to the Penelope element of Drosophila virilis define a new group of retrotransposable elements. Mol. Genet. Genomics. 265, 711–720.

    Article  PubMed  CAS  Google Scholar 

  19. Petrov D.A., Schutzman J.L., Hartl D.L., Lozovskaya E.R. 1995. Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. USA. 92, 8050–8054.

    Article  PubMed  CAS  Google Scholar 

  20. Kajikawa M., Okada N. 2002. LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell. 111, 433–444.

    Article  PubMed  CAS  Google Scholar 

  21. Vitte C., Panaud O. 2005. LTR retrotransposons and flowering plant genome size: Emergence of the increase/decrease model. Cytogenet. Genome Res. 110, 91–107.

    Article  PubMed  CAS  Google Scholar 

  22. Sverdlov E.D. 2000. Retroviruses and primate evolution. BioEssays. 22, 161–171.

    Article  PubMed  CAS  Google Scholar 

  23. Mayer J., Meese E. 2005. Human endogenous retroviruses in the primate lineage and their influence on host genome. Cytogenet. Genome Res. 111, 448–456.

    Article  Google Scholar 

  24. Evgen’ev M.B., Yenikolopov G.N., Peunova N.I., Ilyin Y.V. 1982. Transposition of mobile genetic elements in interspecific hybrids of Drosophila. Chromosoma. 85, 375–386.

    Article  PubMed  CAS  Google Scholar 

  25. SanMiguel P., Tikhonov A., Jin Y.K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P.S., Edwards K.J., Lee M., Avramova Z., et al. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science. 274, 765–768.

    Article  PubMed  CAS  Google Scholar 

  26. Le Q.H., Wright S., Yu Z., Bureau T. 2000. Transposon diversity in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 97, 7376–7381.

    Article  PubMed  CAS  Google Scholar 

  27. Kim J.M., Vanguri S., Boeke J.D., Gabriel A., Voytas D.F. 1998. Transposable elements and genome organization: A comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8, 464–478.

    PubMed  CAS  Google Scholar 

  28. Lampson B.C., Inouye M., Inouye S. 2005. Retrons, msDNA, and the bacterial genome. Cytogenet. Genome Res. 110, 491–499.

    Article  PubMed  CAS  Google Scholar 

  29. Papazisi L., Gorton T.S., Kutish G. Markham P.F.. et al. 2003. The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain Rlow. Microbiology. 149, 2307–2316.

    Article  PubMed  CAS  Google Scholar 

  30. Gardner M.J., Hall N., Fung E., White O., Berriman M., Hyman R.W., Carlton J.M., Pain A., Nelson K.E., Bowman S., et al. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 419, 498–511.

    Article  PubMed  CAS  Google Scholar 

  31. Arkhipova I.R. 2005. Mobile genetic elements and sexual reproduction. Cytogenet. Genome. Res. 110, 372–382.

    Article  PubMed  CAS  Google Scholar 

  32. Lindblad-Toh K., Birney E., Rogers J., Abril J.F. 2002. Sequencing and comparative analysis of the mouse genome. Nature. 420, 552–562.

    Google Scholar 

  33. Silva J.C., Loreto E.L., Clark J.B. 2004. Factors that affect the horizontal transfer of transposable elements. Curr. Issues Mol. Biol. 6, 57–71.

    PubMed  CAS  Google Scholar 

  34. Karavanov A.A., Iordanskii A.B. 1973. The genome structure of Allium cepa L. and Allium fistulosum L. Mol. Biol. 7, 366–371.

    PubMed  CAS  Google Scholar 

  35. SanMiguel P., Gaut B.S., Tikhonov A., Nakajima Y., Bennetzen J.L. 1998. The paleontology of intergene ret-rotransposons of maize. Nature Genet. 20, 43–45.

    Article  PubMed  CAS  Google Scholar 

  36. Vieira C., Nardon C., Arpin C., Lepetit D., Biemont C. 2002. Evolution of genome size in Drosophila. Is the invader’s genome being invaded by transposable elements? Mol. Biol. Evol. 19, 1154–1161.

    PubMed  CAS  Google Scholar 

  37. Locke D.P., Segraves R., Carbone L., Archidiacono N., Albertson D.G., Pinkel D., Eichler E.E. 2003. Large-scale variation among human and great ape genomes determined by array comparative genomic hybridization. Genom. Res. 13, 347–357.

    Article  CAS  Google Scholar 

  38. Malayah D., Bonnivard E., Chalhoub B., Audeon C., Grandbastien M.A. 2001. The mobility of the tobacco Tn1 retrotransposon correlates with its transcription activation by fungal factors. Plant J. 28, 159–168.

    Article  Google Scholar 

  39. Ratner V.A., Zabanov S.A., Kolesnikova O.V., Vasilyeva L.A. 1992. Induction of the mobile genetic element Dm-412 transpositions in the Drosophila genome by heat shock treatment. Proc. Natl. Acad. Sci. USA. 89, 5650–5654.

    Article  PubMed  CAS  Google Scholar 

  40. Ananiev E.V., Gvozdev V.A., Ilyin Yu.V., Tchurikov N.A., Georgiev G.P. 1978. Reiterated genes with varying location in intercalary heterochromatin regions of Drosophila melanogaster polytene chromosomes. Chromosoma. 70, 1–17.

    Article  PubMed  CAS  Google Scholar 

  41. Kaminker J.S., Bergman C.M., Kronmiller B., Carlson J., Svirskas R., Patel S., Frise E., Wheeler D.A., Lewis S.E., Rubin G.M., et al. 2002. The transposable elements of the Drosophila melanogaster euchromatin: A genomics perspective. Genome Biol. 3:RESEARCH0084. Epub.

  42. Waterston R.H., Lindblad-Toh K., Birney E., Rogers J., Abril J.F., Agarwal P., Agarwala R., Ainscough R., Alexandersson M., An P., et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature. 420, 520–562.

    Article  PubMed  CAS  Google Scholar 

  43. Holt R.A., Subramanian G.M., Halpern A., Sutton G.G., Charlab R., Nusskern D.R., Wincker P., Clark A.G., Ribeiro J.M., Wides R., et al. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 298, 129–149.

    Article  PubMed  CAS  Google Scholar 

  44. Grover D., Majumder P.P., Rao C.B., Brahmachari S.K., Mukerji M. 2003. Nonrandom distribution of alu elements in genes of various functional categories: Insight from analysis of human chromosomes 21 and 22. Mol. Biol. Evol. 20, 1420–1424.

    Article  PubMed  CAS  Google Scholar 

  45. Duret L., Marais G., Biemont C. 2000. Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans. Genetics. 156, 1661–1669.

    PubMed  CAS  Google Scholar 

  46. Kogan G.I., Tulin A.V., Aravin A.A., Abramov Y.A., Kalmykova A.I., Maisonhaute C., Gvozdev V.A. 2003. The GATE retrotransposon in Drosophila melanogaster: mobility in heterochromatin and aspects of its expression in germline tissues. Mol. Gen. Genomics. 269, 234–242.

    CAS  Google Scholar 

  47. Alonso-Gonzales L., Dominguez A., Alboronos J. 2003. Structural heterogeneity and genomic distribution of Drosophila melanogaster LTR retrotransposons. Mol. Biol. Evol. 20, 401–409.

    Article  Google Scholar 

  48. Yang J., Malik H.S., Eickbush T.H. 1999. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc. Natl. Acad. Sci. USA. 96, 7847–7852.

    Article  PubMed  CAS  Google Scholar 

  49. Pardue M.L., DeBaryshe P.G. 2003. Retrotransposons provide an evolutionary robust non-telomerase mechanism to maintain telomeres. Annu. Rev. Genet. 37, 485–511.

    Article  PubMed  CAS  Google Scholar 

  50. Jurka J. 1997. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc. Natl. Acad. Sci. USA. 94, 1872–1877.

    Article  PubMed  CAS  Google Scholar 

  51. Feng Q., Moran J.V., Kazazian H.H. Jr., Boeke J.D. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. 87, 905–916.

    Article  PubMed  CAS  Google Scholar 

  52. Ananiev E.V., Phillips R.L., Rines H.W. 1998. Complex structure of knob DNA on maize chromosome 9. Ret-rotransposon invasion into heterochromatin. Genetics. 149, 2025–2037.

    PubMed  CAS  Google Scholar 

  53. Bennetzen J.L. 2000. Transposable element contributions to plant gene and genome evolution. Plant. Mol. Biol. 42, 251–269.

    Article  PubMed  CAS  Google Scholar 

  54. Winkler T., Szafranski K., Glockner G. 2005. Transfer RNA gene-targeted integration: An adaptation of ret-rotransposable elements to survive in the compact Dicty-ostelium discoideum genome. Cytogenet. Genome Res. 110, 288–298.

    Article  Google Scholar 

  55. Nacheva G.A., Guschin D.Y., Preobrazhenskaya O.V., Karpov V.L., Ebralidse K.K., Mirzabekov A.D. 1989. Change in the pattern of histone binding to DNA upon transcriptional activation. Cell. 58, 27–36.

    Article  PubMed  CAS  Google Scholar 

  56. Lebedeva L.A., Nabirochkina E.N., Kurshakova M.M., Robert F., Krasnov A.N., Evgen’ev M.B., Kadonaga J.T., Georgieva S.G., Tora L. 2005. Occupancy of the Drosophila hsp70 promoter by a subset of basal transcription factors diminishes upon transcriptional activation. Proc. Natl. Acad. Sci. USA. 102, 18,087–18,092.

    Article  CAS  Google Scholar 

  57. Shilova V.Y., Garbuz D.G., Myasyankina E.N., Chen B., Evgen’ev M.B., Feder M.E., Zatsepina O.G. 2006. Remarkable site specificity of local transposition into the Hsp70 promoter of Drosophila melanogaster. Genetics. 173, 809–820.

    Article  PubMed  CAS  Google Scholar 

  58. Zelentsova H., Poluectova H., Lyozin G., Zhivotovskii L., Kidwell M.G., Evgen’ev M.B. 1999. Distribution and evolution of mobile elements in the virilis species group of Drosophila. Chromosoma. 108, 1450–1462.

    Article  Google Scholar 

  59. Devannieux M., Heidmann T. 2005. LINEs, SINEs and processed pseudogenes: Parasistic strategies for genome modeling. Cytogenet. Genome Res. 110, 35–48.

    Article  Google Scholar 

  60. Speek M. 2001. Antisense promoter of human L1 ret-rotransposon drives transcription of adjacent cellular genes. Mol. Cell Biol. 21, 1973–1985.

    Article  PubMed  CAS  Google Scholar 

  61. von Sternberg R., Shapiro J.A. 2005. How repeated ret-roelements format genome function. Cytogenet. Genome Res. 110, 108–116.

    Article  Google Scholar 

  62. Gvozdev V.A. 2003. Mobile genes and RNA interference. Genetika. 39, 151–156.

    PubMed  CAS  Google Scholar 

  63. Robin S., Chambeyron S., Bucheton A., Busseau I. 2003. Gene silencing triggered by non-LTR retrotransposons in the female germline of Drosophila melanogaster. Genetics. 164, 521–531.

    PubMed  CAS  Google Scholar 

  64. Bingham P.M., Kidwell M.G., Rubin G.M. 1989. The molecular basis of P-M hybrid dysgenesis: The role of the P-element, a P-strain-specific transposon family. Cell. 29, 995–1004.

    Article  Google Scholar 

  65. Bucheton A., Paro R., Sang H.M., Pelisson A., Finnegan D.J. 1984. The molecular basis of I-R hybrid dysgenesis: identification, cloning and properties of the I-factor. Cell. 38, 153–163.

    Article  PubMed  CAS  Google Scholar 

  66. Vieira J., Vieira C.P., Hartl D.L., Lozovskaya E.R. 1998. Factors contributing to the hybrid dysgenesis syndrome in Drosophila virilis. Genet. Res. 71, 109–117.

    Article  PubMed  CAS  Google Scholar 

  67. Blumenstiel J.P., Hartl D.L. 2005. Evidence for maternally transmitted small interfering RNA in the repression of transposition in Drosophila virilis. Proc. Natl. Acad. Sci. USA. 102, 15,965–15,970.

    Article  CAS  Google Scholar 

  68. Gerasimova T.I., Matjunina L.V., Mizrokhi L.J., Georgiev G.P. 1985. Successive transposition explosions in Drosophila melanogaster and reverse transpositions of mobile dispersed genetic elements. EMBO J. 4, 3773–3779.

    PubMed  CAS  Google Scholar 

  69. Kim A., Terzian C., Santamaria P., Pelisson A., Purd’homme N., Bucheton A. 1994. Retroviruses in invertebrates: The gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 91, 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  70. Sarot E., Payen-Groschene G., Bucheton A., Pelisson A. 2004. Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics. 166, 1313–1321.

    Article  PubMed  CAS  Google Scholar 

  71. O’Neil R.J.W., O’Neil M.J., Graves J.A.M. 1998. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature. 393, 68–72.

    Article  Google Scholar 

  72. Liu B., Wendel J.F. 2000. Retrotransposon activation followed by rapid repression in introgressed rice species. Genome. 43, 874–880.

    Article  PubMed  CAS  Google Scholar 

  73. Darevsky I.S. 1995. Epistendard evolution and speciation via hybridization in reptiles. Zh. Obshch. Biol. 56, 310–316.

    Google Scholar 

  74. Ciobanu D.G., Rudykh I.A., Ryabinina N.L., Grechko V.V., Darevsky I.S. 2002. Reticulate evolution of parthenogenetic rock lizard species (Lacertidae): Inheritance of the CL sat tandem repeat and anonymous RAPD markers. Mol. Biol. 36, 1661–1667.

    Google Scholar 

  75. Evgen’ev M.B., Zelentsova H., Poluectova H., Lyozin G.T., Velikodvorskaya V.V., Pyatkov K.I., Kidwell M.G. 2000. Mobile elements and chromosomal evolution in the virilis group of Drosophila. Proc. Natl. Acad. Sci. USA. 97, 11,337–11,342.

    CAS  Google Scholar 

  76. Van de Lagemaat L.N., Landy J.R., Mager D.L., Medstrannd P. 2003. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530–536.

    Article  PubMed  Google Scholar 

  77. Grahn R.A., Rinehart T.A., Cantrell M.A., Wichman H.A. 2005. Extinction of LINE-1 activity coincident with a major mammalian radiation in rodents. Cytogenet. Genome Res. 110, 407–415.

    Article  PubMed  CAS  Google Scholar 

  78. Khessin R.B. 1984. Nepostoyanstvo genoma (Genome Inconstancy), Moscow: Nauka.

    Google Scholar 

  79. Golubovskii M.D. 2000. Vek genetiki: evolyutsiya idei i ponyatii (A Century of Genetics: Evolution of Ideas and Concepts), Moscow.

  80. Brosius J. 1999. Genomes were forged by massive bombardments with retroelements and retrosequences. Genetica. 107, 209–238.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.B. Evgen’ev, 2007, published in Motekulyarnaya Biologiya, 2007, Vol. 41, No. 2, pp. 234–245.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evgen’ev, M.B. Mobile elements and genome evolution. Mol Biol 41, 203–213 (2007). https://doi.org/10.1134/S0026893307020033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893307020033

Key words

Navigation