Skip to main content
Log in

Neural induction: New achievements and prospects

  • General Problems of Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Neural induction is a triggering of neural differentiation in a portion of cells of the vertebrate embryonic ectoderm in response to signals emanating from adjacent tissues. As revealed more than ten years ago in experiments with Xenopus embryos, the major role in neural induction is played by suppression of the bone morphogenetic protein (BMP) signaling cascade in neural cell precursors. Consequently, the epidermal differentiation program is blocked and a neural program is activated in such cells by default. The so-called default model of neural induction was supported with other experimental subjects. An important role in neural induction is also played by the FGF and Wnt signaling cascades via their interactions with the BMP cascade. As new regulatory proteins involved in neural induction were identified and their properties analyzed in detail, it became possible to apply mathematical modeling to study, with the example of neural induction, the spatial self-organization of cell differentiation in the embryo as one of the main problems of developmental biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spemann H., Mangold H. 1924. Induction of embryonic primordia by implantation of organizers from a different species. Roux’s Arch. Entw. Mech. 100 599–638.

    Google Scholar 

  2. Hemmati-Brivanlou A., Melton D.A. 1994. Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell. 77, 273–281.

    Article  PubMed  CAS  Google Scholar 

  3. Hemmati-Brivanlou A., Melton D. 1997. Vertebrate neural induction. Annu. Rev. Neurosci. 20, 43–60.

    Article  PubMed  CAS  Google Scholar 

  4. De Robertis E.M., Kuroda H. 2004. Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell. Dev. Biol. 20, 285–308.

    Article  PubMed  Google Scholar 

  5. Harland R. 2000. Neural induction. Curr. Opin. Genet. Dev. 10, 357–362.

    Article  PubMed  CAS  Google Scholar 

  6. Kuroda H., Fuentealba L., Ikeda A., Reversade B., De Robertis E.M. 2005. Default neural induction: Neuralization of dissociated Xenopus cells is mediated by Ras/MAPK activation. Genes Dev. 19, 1022–1027.

    Article  PubMed  CAS  Google Scholar 

  7. Smith W.C., Harland R.M. 1992. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell. 70, 829–840.

    Article  PubMed  CAS  Google Scholar 

  8. Smith W.C., Knecht A.K., Wu M., Harland R.M. 1993. Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature. 361, 547–549.

    Article  PubMed  CAS  Google Scholar 

  9. Lamb T.M., Knecht A.K., Smith W.C., Stachel S.E., Economides A.N., Stahl N., Yancopolous G.D., Harland R.M. 1993. Neural induction by the secreted polypeptide noggin. Science. 262, 713–718.

    Article  PubMed  CAS  Google Scholar 

  10. Sasai Y., LuB., Steinbeisser H., Geissert D., Gont L.K., De Robertis E.M. 1994. Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes. Cell. 79, 779–790.

    Article  PubMed  CAS  Google Scholar 

  11. Zimmerman L.B., De Jesus-Escobar J.M., Harland R.M. 1996. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell. 86, 599–606.

    Article  PubMed  CAS  Google Scholar 

  12. Piccolo S., Sasai Y., Lu B., De Robertis E.M. 1996. Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of chordin to BMP-4. Cell. 86, 589–598.

    Article  PubMed  CAS  Google Scholar 

  13. Grunz H., Tacke L. 1989. Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ. Dev. 28, 211–217.

    Article  PubMed  CAS  Google Scholar 

  14. Weinstein D.C., Hemmati-Brivanlou A. 1997. Neural induction in Xenopus laevis: Evidence for the default model. Curr. Opin. Neurobiol. 7, 7–12.

    Article  PubMed  CAS  Google Scholar 

  15. Bachiller D., Klingensmith J., Kemp C., Belo J.A., Anderson R.M., May S.R., McMahon J.A., McMahon A.P., Harland R.M., Rossant J., De Robertis E.M. 2000. The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature. 403, 658–661.

    Article  PubMed  CAS  Google Scholar 

  16. Tropepe V., Hitoshi S., Sirard C., Mak T.W., Rossant J., van der Kooy D. 2001. Direct neural fate specification from embryonic stem cells: A primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron. 30, 65–78.

    Article  PubMed  CAS  Google Scholar 

  17. Finley M.F., Devata S., Huettner J.E. 1999. BMP-4 inhibits neural differentiation of murine embryonic stem cells. J. Neurobiol. 40, 271–287.

    Article  PubMed  CAS  Google Scholar 

  18. Gratsch T.E., O’shea K.S. 2002. Noggin and chordin have distinct activities in promoting lineage commitment of mouse embryonic stem (ES) cells. Dev. Biol. 245, 83–94.

    Article  PubMed  CAS  Google Scholar 

  19. Lorincz M.T. 2006. Optimized neuronal differentiation of murine embryonic stem cells: Role of cell density. Methods Mol. Biol. 330, 55–69.

    PubMed  CAS  Google Scholar 

  20. Streit A., Stern C.D. 1999. Establishment and maintenance of the border of the neural plate in the chick: Involvement of FGF and BMP activity. Mech. Dev. 82, 51–66.

    Article  PubMed  CAS  Google Scholar 

  21. Faure S., de Santa Barbara P., Roberts D.J., Whitman M. 2002. Endogenous patterns of BMP signaling during early chick development. Dev. Biol. 244, 44–65.

    Article  PubMed  CAS  Google Scholar 

  22. Dale L., Wardle F.C. 1999. A gradient of BMP activity specifies dorsal-ventral fates in early Xenopus embryos. Semin. Cell Dev. Biol. 10, 319–326.

    Article  PubMed  CAS  Google Scholar 

  23. Chen D., Zhao M., Mundy G.R. 2004. Bone morphogenetic proteins. Growth Factors. 22, 233–241.

    Article  PubMed  CAS  Google Scholar 

  24. Moos M., Jr., Wang S., Krinks M. 1995. Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer. Development. 121, 4293–4301.

    PubMed  CAS  Google Scholar 

  25. Nishimatsu S., Thomsen G.H. 1998. Ventral mesoderm induction and patterning by bone morphogenetic protein heterodimers in Xenopus embryos. Mech. Dev. 74, 75–88.

    Article  PubMed  CAS  Google Scholar 

  26. Baker J.C., Harland R.M. 1997. From receptor to nucleus: The Smad pathway. Curr. Opin. Genet. Dev. 7, 467–473.

    Article  PubMed  CAS  Google Scholar 

  27. Nohe A., Keating E., Knaus P., Petersen N.O. 2004. Signal transduction of bone morphogenetic protein receptors. Cell Signal. 16, 291–299.

    Article  PubMed  CAS  Google Scholar 

  28. Miyazono K., Maeda S., Imamura T. 2005. BMP receptor signaling: Transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 16, 251–263.

    Article  PubMed  CAS  Google Scholar 

  29. Wrana J.L., Attisano L. 2000. The Smad pathway. Cytokine Growth Factor Rev. 11, 5–13.

    Article  PubMed  CAS  Google Scholar 

  30. Hata A., Seoane J., Lagna G., Montalvo E., Hemmati-Brivanlou A., Massague J. 2000. OAZ uses distinct DNA-and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell. 100, 229–240.

    Article  PubMed  CAS  Google Scholar 

  31. Onichtchouk D., Glinka A., Niehrs C. 1998. Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm. Development. 125, 1447–1456.

    PubMed  CAS  Google Scholar 

  32. Ramos C., Robert B. 2005. msh/Msx gene family in neural development. Trends Genet. 21, 624–632.

    Article  PubMed  CAS  Google Scholar 

  33. Monsoro-Burq A.H., Wang E., Harland R. 2005. Max1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev. Cell. 8, 167–178.

    Article  PubMed  CAS  Google Scholar 

  34. Tribulo C., Aybar M.J., Nguyen V.H., Mullins M.C., Mayor R. 2003. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development. 130, 6441–6452.

    Article  PubMed  CAS  Google Scholar 

  35. Karaulanov E., Knochel W., Niehrs C. 2004. Transcriptional regulation of BMP4 synexpression in transgenic Xenopus. EMBO J. 23, 844–856.

    Article  PubMed  CAS  Google Scholar 

  36. Hemmati-Brivanlou A., Thomsen G.H. 1995. Ventral mesodermal patterning in Xenopus embryos: Expression patterns and activities of BMP-2 and BMP-4. Dev. Genet. 17, 78–89.

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki A., Kaneko E., Ueno N., Hemmati-Brivanlou A. 1997. Regulation of epidermal induction by BMP2 and BMP7 signaling. Dev. Biol. 189, 112–122.

    Article  PubMed  Google Scholar 

  38. Hartley K.O., Hardcastle Z., Friday R.V., Amaya E., Papalopulu N. 2001. Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation. Dev. Biol. 238, 168–184.

    Article  PubMed  CAS  Google Scholar 

  39. McMahon J.A., Takada S., Zimmerman L.B., Fan C.M., Harland R.M., McMahon A.P. 1998. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12, 1438–1452.

    PubMed  CAS  Google Scholar 

  40. Bouwmeester T., Kim S., Sasai Y., Lu B., De Robertis E.M. 1996. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature. 382, 595–601.

    Article  PubMed  CAS  Google Scholar 

  41. Coffinier C., Ketpura N., Tran U., Geissert D., De Robertis E.M. 2002. Mouse Crossveinless-2 is the vertebrate homolog of a Drosophila extracellular regulator of BMP signaling. Mech. Dev. 119Suppl 1, S179–S184.

    Article  PubMed  Google Scholar 

  42. Eimon P.M., Harland R.M. 2001. Xenopus Dan, a member of the Dan gene family of BMP antagonists, is expressed in derivatives of the cranial and trunk neural crest. Mech. Dev. 107, 187–189.

    Article  PubMed  CAS  Google Scholar 

  43. Hemmati-Brivanlou A., Kelly O.G., Melton D.A. 1994. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell. 77, 283–295.

    Article  PubMed  CAS  Google Scholar 

  44. Hsu D.R., Economides A.N., Wang X., Eimon P.M., Harland R.M. 1998. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell. 1, 673–683.

    Article  PubMed  CAS  Google Scholar 

  45. Fletcher R.B., Watson A.L., Harland R.M. 2004. Expression of Xenopus tropicalis noggin1 and noggin2 in early development: Two noggin genes in a tetrapod. Gene Expr. Patterns. 5, 225–230.

    Article  PubMed  CAS  Google Scholar 

  46. Eroshkin F.M., Ermakova G.V., Bayramov A.V., Zaraisky A.G. 2006. Multiple noggins in vertebrate genome: Cloning and expression of noggin2 and noggin4 in Xenopus laevis. Gene Expr. Patterns. 6, 180–186.

    Article  PubMed  CAS  Google Scholar 

  47. Ohta K., Lupo G., Kuriyama S., Keynes R., Holt C.E., Harris W.A., Tanaka H., Ohnuma S. 2004. Tsukushi functions as an organizer inducer by inhibition of BMP activity in cooperation with chordin. Dev. Cell. 7, 347–358.

    Article  PubMed  CAS  Google Scholar 

  48. Ecochard V., Cayrol C., Foulquier F., Zaraisky A., Duprat A.M. 1995. A novel TGF-beta-like gene, fugacin, specifically expressed in the Spemann organizer of Xenopus. Dev. Biol. 172, 699–703.

    Article  PubMed  CAS  Google Scholar 

  49. Smith W.C., McKendry R., Ribisi S., Jr., Harland R.M. 1995. A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell. 82, 37–46.

    Article  PubMed  CAS  Google Scholar 

  50. Tamaoki H., Miura R., Kusunoki M., Kyogoku Y., Kobayashi Y., Moroder L. 1998. Folding motifs induced and stabilized by distinct cystine frameworks. Protein Eng. 11, 649–659.

    Article  PubMed  CAS  Google Scholar 

  51. Avsian-Kretchmer O., Hsueh A.J. 2004. Comparative genomic analysis of the eight-membered ring cystine knot-containing bone morphogenetic protein antagonists. Mol. Endocrinol. 18, 1–12.

    Article  PubMed  CAS  Google Scholar 

  52. Groppe J., Greenwald J., Wiater E., Rodriguez-Leon J., Economides A.N., Kwiatkowski W., Affolter M., Vale W.W., Belmonte J.C., Choe S. 2002. Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature. 420, 636–642.

    Article  PubMed  CAS  Google Scholar 

  53. Oelgeschlager M., Larrain J., Geissert D., De Robertis E.M. 2000. The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. Nature. 405, 757–763.

    Article  PubMed  CAS  Google Scholar 

  54. Piccolo S., Agius E., Lu B., Goodman S., Dale L., De Robertis E.M. 1997. Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell. 91, 407–416.

    Article  PubMed  CAS  Google Scholar 

  55. Lee H.X., Ambrosio A.L., Reversade B., De Robertis E.M. 2006. Embryonic dorsal-ventral signaling: Secreted frizzled-related proteins as inhibitors of tolloid proteinases. Cell. 124, 147–159.

    Article  PubMed  CAS  Google Scholar 

  56. Onichtchouk D., Chen Y.G., Dosch R., Gawantka V., Delius H., Massague J., Niehrs C. 1999. Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature. 401, 480–485.

    Article  PubMed  CAS  Google Scholar 

  57. Gamer L.W., Nove J., Levin M., Rosen V. 2005. BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos. Dev. Biol. 285, 156–168.

    Article  PubMed  CAS  Google Scholar 

  58. Hino J., Kangawa K., Matsuo H., Nohno T., Nishimatsu S. 2004. Bone morphogenetic protein-3 family members and their biological functions. Front. Biosci. 9, 1520–1529.

    PubMed  CAS  Google Scholar 

  59. Hata A., Lagna G., Massague J., Hemmati-Brivanlou A. 1998. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 12, 186–197.

    PubMed  CAS  Google Scholar 

  60. Nakao A., Afrakhte M., Moren A., Nakayama T., Christian J.L., Heuchel R., Itoh S., Kawabata M., Heldin N.E., Heldin C.H., ten Dijke P. 1997. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 389, 631–635.

    Article  PubMed  CAS  Google Scholar 

  61. Bhushan A., Chen Y., Vale W. 1998. Smad7 inhibits mesoderm formation and promotes neural cell fate in Xenopus embryos. Dev. Biol. 200, 260–268.

    Article  PubMed  CAS  Google Scholar 

  62. Gestri G., Carl M., Appolloni I., Wilson S.W., Barsacchi G., Andreazzoli M. 2005. Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting Bmp4 expression. Development. 132, 2401–2413.

    Article  PubMed  CAS  Google Scholar 

  63. Zaraisky A.G., Lukyanov S.A., Vasiliev O.L., Smirnov Y.V., Belyavsky A.V., Kazanskaya O.V. 1992. A novel homeobox gene expressed in the anterior neural plate of the Xenopus embryo. Dev. Biol. 152, 373–382.

    Article  PubMed  CAS  Google Scholar 

  64. Kazanskaya O.V., Severtzova E.A., Barth K.A., Ermakova G.V., Lukyanov S.A., Benyumov A.O., Pannese M., Boncinelli E., Wilson S.W., Zaraisky A.G. 1997. Anf: A novel class of vertebrate homeobox genes expressed at the anterior end of the main embryonic axis. Gene. 200, 25–34.

    Article  PubMed  CAS  Google Scholar 

  65. Sasai Y., Lu B., Piccolo S., De Robertis E. M. 1996. Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO J. 15, 4547–4555.

    PubMed  CAS  Google Scholar 

  66. Uzgare A.R., Uzman J.A., El-Hodiri H.M., Sater A.K. 1998. Mitogen-activated protein kinase and neural specification in Xenopus. Proc. Natl. Acad. Sci. USA. 95, 14833–14838.

    Article  PubMed  CAS  Google Scholar 

  67. Hongo I., Kengaku M., Okamoto H. 1999. FGF signaling and the anterior neural induction in Xenopus. Dev. Biol. 216, 561–581.

    Article  PubMed  CAS  Google Scholar 

  68. Stern C.D. 2005. Neural induction: Old problem, new findings, yet more questions. Development. 132, 2007–2021.

    Article  PubMed  CAS  Google Scholar 

  69. Streit A., Lee K.J., Woo I., Roberts C., Jessell T.M., Stern C.D. 1998. Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development. 125, 507–519.

    PubMed  CAS  Google Scholar 

  70. Streit A., Berliner A.J., Papanayotou C., Sirulnik A., Stern C. D. 2000. Initiation of neural induction by FGF signalling before gastrulation. Nature. 406, 74–78.

    Article  PubMed  CAS  Google Scholar 

  71. Sheng G., dos Reis M., Stern C.D. 2003. Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation. Cell. 115, 603–613.

    Article  PubMed  CAS  Google Scholar 

  72. Pera E.M., Ikeda A., Eivers E., De Robertis E.M. 2003. Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev. 17, 3023–3028.

    Article  PubMed  CAS  Google Scholar 

  73. Moreau M., Leclerc C. 2004. The choice between epidermal and neural fate: A matter of calcium. Int. J. Dev. Biol. 48, 75–84.

    Article  PubMed  CAS  Google Scholar 

  74. Moon R.T. 2005. Wnt/beta-catenin pathway. Sci. STKE. cm1.

  75. Sokol S.Y. 1999. Wnt signaling and dorso-ventral axis specification in vertebrates. Curr. Opin. Genet. Dev. 9, 405–410.

    Article  PubMed  CAS  Google Scholar 

  76. Wilson S.I., Edlund T. 2001. Neural induction: Toward a unifying mechanism. Nature Neurosci. 4Suppl., 1161–1168.

    Article  PubMed  CAS  Google Scholar 

  77. Glinka A., Wu W., Delius H., Monaghan A.P., Blumenstock C., Niehrs C. 1998. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature. 391, 357–362.

    Article  PubMed  CAS  Google Scholar 

  78. Aubert J., Dunstan H., Chambers I., Smith A. 2002. Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nature Biotechnol. 20, 1240–1245.

    Article  CAS  Google Scholar 

  79. Hikasa H., Sokol S.Y. 2004. The involvement of Frodo in TCF-dependent signaling and neural tissue development. Development. 131, 4725–4734.

    Article  PubMed  CAS  Google Scholar 

  80. Linker C., Stern C.D. 2004. Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists. Development. 131, 5671–5681.

    Article  PubMed  CAS  Google Scholar 

  81. Morgan R., Sargent M.G. 1997. The role in neural patterning of translation initiation factor eIF4AII; induction of neural fold genes. Development. 124, 2751–2760.

    PubMed  CAS  Google Scholar 

  82. Witta S.E., Agarwal V.R., Sato S.M. 1995. XIPOU 2, a noggin-inducible gene, has direct neuralizing activity. Development. 121, 721–730.

    PubMed  CAS  Google Scholar 

  83. Mizuseki K., Kishi M., Shiota K., Nakanishi S., Sasai Y. 1998. SoxD: An essential mediator of induction of anterior neural tissues in Xenopus embryos. Neuron. 21, 77–85.

    Article  PubMed  CAS  Google Scholar 

  84. Mizuseki K., Kishi M., Matsui M., Nakanishi S., Sasai Y. 1998. Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development. 125, 579–587.

    PubMed  CAS  Google Scholar 

  85. Kishi M., Mizuseki K., Sasai N., Yamazaki H., Shiota K., Nakanishi S., Sasai Y. 2000. Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm. Development. 127, 791–800.

    PubMed  CAS  Google Scholar 

  86. Kuo J.S., Patel M., Gamse J., Merzdorf C., Liu X., Apekin V., Sive H. 1998. Opl: A zinc finger protein that regulates neural determination and patterning in Xenopus. Development. 125, 2867–2882.

    PubMed  CAS  Google Scholar 

  87. Tropepe V., Li S., Dickinson A., Gamse J.T., Sive H.L. 2006. Identification of a BMP inhibitor-responsive promoter module required for expression of the early neural gene zic1. Dev. Biol. 289, 517–529.

    Article  PubMed  CAS  Google Scholar 

  88. Takemoto T., Uchikawa M., Kamachi Y., Kondoh H. 2006. Convergence of Wnt and FGF signals in the genesis of posterior neural plate through activation of the Sox2 enhancer N-1. Development. 133, 297–306.

    Article  PubMed  CAS  Google Scholar 

  89. Uchikawa M., Ishida Y., Takemoto T., Kamachi Y., Kondoh H. 2003. Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev. Cell. 4, 509–519.

    Article  PubMed  CAS  Google Scholar 

  90. De Robertis E.M. 2006. Spemann’s organizer and self-regulation in amphibian embryos. Nature Rev. Mol. Cell. Biol. 7, 296–302.

    Article  Google Scholar 

  91. Zaraiskii A.G. 1991. Self-organization in the determination of the size of the axial structures in the embryogenesis of the clawed toad. Ontogenez. 22, 365–374.

    PubMed  CAS  Google Scholar 

  92. Nicolis G., Prigogine I. 1977. Self-Organization in Non-equilibrium Systems. New York: Wiley.

    Google Scholar 

  93. Turing A. 1952. The chemical basis of morphogenesis. Philos. Transact. R. Soc. London. B. 237, 37.

    Google Scholar 

  94. Meinhardt H. 1982. Models of Biological Pattern Formation. London: Acad. Press.

    Google Scholar 

  95. Munoz-Sanjuan I., Brivanlou A.H. 2002. Neural induction, the default model and embryonic stem cells. Nature Rev. Neurosci. 3, 271–280.

    Article  CAS  Google Scholar 

  96. Reversade B., De Robertis E.M. 2005. Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell. 123, 1147–1160.

    Article  PubMed  CAS  Google Scholar 

  97. Eldar A., Dorfman R., Weiss D., Ashe H., Shilo B.Z., Barkai N. 2002. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature. 419, 304–308.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.G. Zaraisky, 2007, published in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 2, pp. 200–215.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaraisky, A.G. Neural induction: New achievements and prospects. Mol Biol 41, 173–186 (2007). https://doi.org/10.1134/S002689330702001X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689330702001X

Key words

Navigation