Skip to main content
Log in

Isolation and characterization of a novel dehydrin gene from Capsella bursa-pastoris

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A novel dehydrin gene designated as Cbcor29 was cloned from Capsella bursa-pastoris by rapid amplification of cDNA ends (RACE) and genome walker technique. The full-length cDNA of Cbcor29 was 1101 bp long with a 783 bp open reading frame (ORF), encoding a putative protein of 261 amino acids. Like other dehydrin proteins, CbCOR29 contained a high percentage of charged and polar amino acids, in which Cys and Trp amino acids were absent. In addition, the predicted CbCOR29 protein possesses three conserved repeats of the characterized Lys-rich domains (K-segments), and a Ser-rich domain (S-segment) prior to the first Lys-rich domain, which presented a typical SK3 structure of dehydrins. Analysis of Cbcor29 genomic DNA revealed that it contains 2 exons and 1 intron, which is a typical character of dehydrin genes. Subsequent bioinformatic analysis also showed that the sequence of CbCOR29 has high homology with other dehydrin proteins, especially with cor47 from Arabidopsis thaliana. Moreover, semi-quantitative RT-PCR revealed that the expression of Cbcor29 can be induced by exposure to drought, low temperature, NaCl, and exogenous ABA treatment. Our study led to the conclusion that the Cbcor29 gene is a new member of the dehydrin gene family and might exert functions in responsiveness to drought, cold, and salt in Capsella bursa-pastoris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rabbani M.A., Maruyama K., Abe H., Khan M.A., Katsura K., Ito Y., Yoshiwara K., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. 2003. Monitoring expression profiles of rice genes under cold, drought, and highsalinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133, 1755–1767.

    Article  CAS  PubMed  Google Scholar 

  2. Shen Y., Jia W., Zhang Y., Hu Y., Wu Q., Lin Z. 2004. Improvement of drought tolerance in transgenic tobacco plants by a dehydrin-like gene transfer. Agric. Sci. China. 3, 575–583.

    Google Scholar 

  3. Close T.J. 1996. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 97, 795–803.

    Article  CAS  Google Scholar 

  4. Ingram J., Bartels D. 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 377–403.

    Article  CAS  PubMed  Google Scholar 

  5. Marian C.O., Krebs S.L., Arora R. 2003. Dehydrin variability among rhododendron species: A 25-kDa dehydrin is conserved and associated with cold acclimation across diverse species. New Phytol. 161, 773–780.

    Google Scholar 

  6. Campbell S.A., Crone D.E., Ceccardi T.L., Close T.J. 1998. A ca. 40 kDa maize (Zea mays L.) embryo dehydrin is encoded by the dhn2 locus on chromosome 9. Plant Mol. Biol. 38, 417–423.

    Article  CAS  PubMed  Google Scholar 

  7. Svensson J., Ismail A.M., Palva E.T., Close T.J. 2002. Dehydrins. In: Cell and Molecular Responses to Stress. Eds. Storey K.B., Storey J.M. Amsterdam: Elsevier, pp. 155–171.

    Google Scholar 

  8. Dure L. III, Crouch M., Harada J., Ho T.H.D., Mundy J., Quatrano R., Thomas T., Sung Z.R. 1989. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 12, 475–486.

    Article  CAS  Google Scholar 

  9. Dure L. III. 1993. Structural motifs in LEA proteins of higher plants. In: Response of Plants to Cellular Dehydration during Environmental Stress. Eds Close T.J., Bray E.A. Rockville, MD: Am. Soc. Plant Physiol., 91–103.

    Google Scholar 

  10. Close T.J. 1997. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol. Plant. 100, 291–296.

    Article  CAS  Google Scholar 

  11. Lee S.C., Lee M.Y., Kim S.J., Jun S.H., An G., Kim S.R. 2005. Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.). Mol. Cell. 19, 212–218.

    Article  CAS  Google Scholar 

  12. Allagulova C.R., Gimalov F.R., Shakirova F.M., Vakhitov V.A. 2003. The plant dehydrins: Structure and putative functions. Biokhimiya. 68, 945–951.

    CAS  Google Scholar 

  13. Lopez C.G., Banowetz G.M., Peterson C.J., Kronstad W.E. 2003. Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci. 43, 577–582.

    CAS  Google Scholar 

  14. Kiyosue T., Kazuko Y.S., Kazuo S. 1994. Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant. Cell. Physiol. 35, 225–231.

    CAS  PubMed  Google Scholar 

  15. Thomashow M.F. 1999. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 571–599.

    Article  CAS  PubMed  Google Scholar 

  16. Lu Y., Sun X., Yao J., Chai Y., Zhao X., Zhang L., Song J., Pang Y., Wu W., Tang K. 2003. Isolation and expression of cold-regulated cDNA from Chinese cabbage (Brassica pekinensis). DNA Seq. 14, 219–222.

    CAS  PubMed  Google Scholar 

  17. Deng Z.X., Pang Y.Z., Kong W.W., Chen Z.H., Wang X.L., Liu X.J., Pi Y., Sun X.F., Tang K.X. 2005. A novel ABA-dependent dehydrin ERD10 gene from Brassica napus. DNA Seq. 16, 28–35.

    CAS  PubMed  Google Scholar 

  18. Dellaport S.L., Wood J.M., Hicks J.B. 1983. A plant DNA minipreparation. Plant Mol. Biol. Rep. 1, 19–21.

    Google Scholar 

  19. Campbell S.A., Close T.J. 1997. Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol. 137, 61–74.

    Article  CAS  Google Scholar 

  20. Plana M., Itarte E., Eritja R., Goday A., Pages M., Martinez M.C. 1991. Phosphorylation of maize RAB-17 protein by casein kinase. J. Biol. Chem. 266, 22510–22514.

    CAS  PubMed  Google Scholar 

  21. Jensen A.B., Goday A., Figueras M., Jessop A.C., Pages M. 1998. Phosphorylation mediates the nuclear targeting of the maize Rab 17 protein. Plant J. 13, 691–698.

    Article  CAS  PubMed  Google Scholar 

  22. Shapiro M.B., Senapathy P. 1987. RNA splice junctions of different classes of eukaryotes: Sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15, 7155–7174.

    CAS  PubMed  Google Scholar 

  23. Nordin K., Heino P., Palva E.T. 1991. Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 16, 1061–1071.

    Article  CAS  PubMed  Google Scholar 

  24. Nordin K., Vahala T., Palva E.T. 1993. Differential expression of two related low-temperature induced genes in Arabidopsis thaliana L. Heynh. Plant Mol. Biol. 21, 641–653.

    Article  CAS  PubMed  Google Scholar 

  25. Yamaguchi-Shinozaki K., Shinozaki K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 6, 251–264.

    Article  CAS  PubMed  Google Scholar 

  26. Zhu J.K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247–273.

    Article  CAS  PubMed  Google Scholar 

  27. Kim K.N., Cheong Y.H., Granta J.J., Pandeya G.K., Luan S. 2003. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell. 15, 411–423.

    CAS  PubMed  Google Scholar 

  28. Shinozaki K, Yamaguchi-Shinozaki K. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3, 217–233.

    CAS  PubMed  Google Scholar 

  29. Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol. 17, 287–291.

    CAS  Google Scholar 

  30. Xue G. 2002. An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif. Biochem. Biophys. Acta. 1577, 63–72.

    CAS  PubMed  Google Scholar 

  31. Hara M., Terashima T.F., Fukaya T., Kuboi T. 2003. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta. 217, 290–298.

    CAS  PubMed  Google Scholar 

  32. Houde M., Dallaire S., N’Dong D., Sarhan F. 2004. Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotech. J. 2, 381–388.

    Article  CAS  Google Scholar 

  33. Yin Z., Pawlowicz I., Bartoszewski G., Malinowski R., Malepszy S., Rorat T. 2004. Transcriptional expression of a Solanum sogarandinum pGT::Dhn10 gene fusion in cucumber, and its correlation with chilling tolerance in transgenic seedling. Cell. Mol. Biol. Lett. 9, 891–902.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 1, pp. 52–60.

The article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Z., Wang, X. Isolation and characterization of a novel dehydrin gene from Capsella bursa-pastoris . Mol Biol 40, 43–50 (2006). https://doi.org/10.1134/S0026893306010080

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893306010080

Key words

Navigation