Skip to main content
Log in

Magnesium magnetic isotope effect: A key to the mechanochemistry of phosphorylating enzymes as molecular machines

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The discovery of the powerful magnesium isotope effect on enzymatic ATP synthesis provides a new insight into the mechanochemistry of enzymes as molecular machines. The catalytic activities of ATPase, creatine kinase, and glycerophsphate kinase containing a Mg2+ ion with magnetic isotope nuclei (25Mg) were found to be two to four times higher than those of the enzymes with spinless, nonmagnetic magnesium cation isotopes (24Mg or 26Mg). This demonstrates unambiguously that ATP synthesis is a spin-selective process involving Mg2+ as the electron-accepting reagent. ATP synthesis proceeds in an ion-radical pair consisting of an ADP oxyradical and Mg2+. In this process, the magnesium bivalent cation is the key agent that transforms the mechanics of a protein molecule into chemical processes. This ion is the crucial structural component of enzymes as mechanochemical molecular machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blumenfeld L.A. 1974. Problemy biologicheskoi fiziki (Problems in Biological Physics) Moscow: Nauka.

    Google Scholar 

  2. Oster G., Wang H. 2000. On the protein dynamics shift in enzyme catalytic activity control. J. Bioenerg. Biomembr. 32, 459–465.

    Article  CAS  PubMed  Google Scholar 

  3. Oster G., Wang H. 2000. Nucleoside inhibitors promoted conformational changes in prokaryotic phosphotransferases. Biophys. Biochim. Acta. 1458, 482–494.

    CAS  Google Scholar 

  4. Weber J., Senior A. 2000. The substrate binding site topology modifications in recombinant and intact metalloenzymes. Biophys. Biochim. Acta. 1458, 300–307.

    CAS  Google Scholar 

  5. Buchachenko A.L. 2005. Mechanochemistry of single molecules: New optical technologies. Usp. Khim. 74, 680–688.

    Google Scholar 

  6. Yasuda R., Noji H., Yoshida M., Kinosita K., Iton H. 2001. On the rotary mechanism in the bacterial ATP synthase functioning. Nature. 410, 898–904.

    Article  CAS  PubMed  Google Scholar 

  7. Noji H., Yoshida M. 2001. Potassium pumping in the ATP synthase activity affected by synthetic non-nucleotide inhibitors. J. Biol. Chem. 276, 1665–1671.

    CAS  PubMed  Google Scholar 

  8. Sambongi Y., Iko Y., Tanabe M., Omote H., Iwamoto-Kihara A., Ueda I., Yanagida T., Wada I., Futai M. 1999. The eucaryotic ATP synthase rotary nanomechanics study. Science. 286, 1722–1727.

    Article  CAS  PubMed  Google Scholar 

  9. Rondelez Y., Tresset G., Nakashima T., Kato-Yamada Y., Fujita H., Takeuchi S., Noji H. 2005. The flexibility of the ATP synthase molecular motion and the reverse reaction control. Nature. 433, 773–777.

    Article  CAS  PubMed  Google Scholar 

  10. Oster G. 2002. Towards a novel approach to the energy turnover control in eukaryotes. Nature. 417, 25–29.

    Article  CAS  PubMed  Google Scholar 

  11. Blumenfeld L.A., Goldansky V.I., Podgoretsky M.I., Chernavsky D.S. 1967. Quantum-mechanichal resonance of energy levels in structural chemistry and biochemistry of macroergic nucleotides. Zh. Strukt. Khim. 8, 854–861.

    Google Scholar 

  12. Blumenfeld L.A., Temkin M.I. 1962. Electrophilic modification of nucleotide amino groups and its role in energy metabolism. Biofizika. 7, 731–737.

    Google Scholar 

  13. Blumenfeld L.A., Koltover V.K. 1972. Electron-acceptor processes in the functioning of the mitochondrial respiratory chain. Mol. Biol. 6, 161–168.

    Google Scholar 

  14. Buchachenko A.L., Kouznetsov D.A., Arkhangelsky S.E., Orlova M.A., Markaryan A. 2005. Spin biochemistry: mitochondrial phosphorylation as the magnesium-related nuclear spin selective process. Cell. Biochem. Biophys. 48, 886–894.

    Google Scholar 

  15. Buchachenko A.L., Kouznetsov D.A., Arkhangelsky S.E., Orlova M.A., Markaryan A. 2004. Magnetic isotope effect of magnesium nuclei in mitochondrial ATP synthesis. Dokl. Akad. Nauk. 396, 711–714.

    Google Scholar 

  16. Buchachenko A.L., Kouznetsov D.A., Arkhangelsky S.E., Orlova M.A., Markaryan A. 2005. Spin biochemistry: Magnesium-related magnetic isotope effect in mitochondrial ATP synthesis. Mitochondrion. 5, 67–70.

    Article  CAS  PubMed  Google Scholar 

  17. Buchachenko A.L., Kouznetsov D.A., Arkhangelsky S.E., Orlova M.E. 2006. On the search for magnesium nuclear magnetic isotope effect in direct and reversed reactions promoted by the Vipera xanthia creatine kinase. FEBS Lett. (in press).

  18. Buchachenko A.L., Nikiforov G.A., Galimov E.M. 1976. Magnetic isotope effect of magnesium nuclei in phosphorylation reactions. Dokl. Akad. Nauk SSSR. 228, 379–383.

    CAS  Google Scholar 

  19. Buchachenko A.L. 2001. A survey on the chemical aspects in the nuclear magnetic isotope effect studies. J. Phys. Chem. A105, 9995–10004.

    Google Scholar 

  20. Buchachenko A.L., Kouznetsov D.A., Shishkov A.V. 2004. Spin biochemistry: A magnetic isotope effect of mercury in the methylmercury chloride reaction with creatine kinase. J. Phys. Chem. A108, 707–711.

    Google Scholar 

  21. Lahiri S., Wang P., Babbit S., Mcleish M., Kenyon G., Allen K. 2001. Dehydration of the creatine kinase nucleotide binding site in the enzyme function control studies. Biochemistry. 41, 13861–13868.

    Google Scholar 

  22. Tikhonov A.N., Pogrebnaya A.F., Romanovskii Yu.M. 2003. ATP synthases: Specific features of structure and activity regulation in eukaryotic cells. Biofizika. 48, 1052–1059.

    CAS  PubMed  Google Scholar 

  23. Weber J., Senior A. 2003. Eukaryotic ATP synthases. Catalytic domains and the activity regulation. Brief review. FEBS Lett. 545, 61–65.

    Article  CAS  PubMed  Google Scholar 

  24. Cohn M. 1953. Oxygen transfer in oxidative phosphorylation: Orthophosphate and water participation study. J. Biol. Chem. 201, 735–738.

    CAS  PubMed  Google Scholar 

  25. Merli A., Szilagyi A., Flachner B., Rossi G., Vas M. 2002. Pig kidney phosphoglycerate kinase: The catalytic site function. Biochemistry. 41, 111–118.

    Article  CAS  PubMed  Google Scholar 

  26. Flachner B., Kovari Z., Varga A., Vas M. 2004. Pig muscle phosphoglycerate kinase in the energy metabolism control. Biochemistry. 43, 3436–3441.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Devoted to L. A. Blumenfeld

Original Russian Text © A.L. Buchachenko, D.A. Kuznetsov, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 1, pp. 12–19.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchachenko, A.L., Kuznetsov, D.A. Magnesium magnetic isotope effect: A key to the mechanochemistry of phosphorylating enzymes as molecular machines. Mol Biol 40, 9–15 (2006). https://doi.org/10.1134/S002689330601002X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689330601002X

Key words

Navigation