Skip to main content
Log in

Metagenomic Analysis of Bottom Sediments of the Karst Meromictic Lake Black Kichier Revealed Abundant Unculturable Thermoplasmatota

  • SHORT COMMUNICATIONS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Investigations into the microbial community of bottom sediments in the karst Lake Black Kichier were conducted. These sediments exhibited elevated levels of sulfide, dissolved methane, and organic matter. Direct radiotracer experiments revealed substantial rates of microbial processes involved in the decomposition of organic matter. Uncultivated archaea belonging to the phylum Thermoplasmatota were identified within the microbial community. Metagenomic analysis unveiled representatives from five orders: Methanomassiliicoccales, Thermoprofundales (formerly known as Marine Benthic Group D and DHVEG-1), DTX01, SG8-5, and Candidatus Gimiplasmatales (formerly UBA10834). These archaea were previously believed to occur exclusively in deep marine sediments characterized by extreme organic matter scarcity. This discovery reshapes our understanding of the role played by Thermoplasmatota archaea, spanning five orders, in the degradation segment of the carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Alneberg, J., Bjarnason, B.S., De Bruijn, I., Schirmer, M., Quick, J., Ijaz, U.Z., Lahti, L., Loman, N.J., Andersson, A.F., and Quince, C., Binning metagenomic contigs by coverage and composition, Nat. Methods, 2014, vol. 11, pp. 1144–1146.

    Article  CAS  PubMed  Google Scholar 

  2. Baker, B.J., De Anda, V., Seitz, K.W., Dombrowski, N., Santoro, A.E., and Lloyd, K.G., Diversity, ecology, and evolution of Archaea, Nat. Microbiol., 2020, vol. 5, pp. 887–900. https://doi.org/10.1038/s41564-020-0715-z

    Article  CAS  PubMed  Google Scholar 

  3. Borrel, G., Adam, P.S., and Gribaldo, S., Methanogenesis and the Wood–Ljungdahl pathway: an ancient, versatile, and fragile association, Genome Biol. Evol., 2016, vol. 8, pp. 1706–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Capone, D.G. and Kiene, R.P., Comparison of microbial dynamics in marine and freshwater sediments—contrasts in anaerobic carbon catabolism, Limnol. Oceanogr., 1988, vol. 33, pp. 725–749.

    CAS  Google Scholar 

  5. Dong, X., Greening, C., Rattray, J.E., Chakraborty, A., Chuvochina, M., Mayumi, D., Dolfing, J., Li, C., Brooks, J.M., Bernard, B.B., Groves, R.A., Lewis, I.A., and Hubert, C.R.J., Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nature Comm., 2019, vol. 10, no. 1, p. 1816. https://doi.org/10.1038/s41467-019-09747-0

    Article  CAS  Google Scholar 

  6. Gorbunov, M.Yu. and Umanskaya, M.V., Karst Lakes of Mari Chodra National Park: stratification and vertical distribution of phototrophic plankton, 4th Conference on Actual Problems of Specially Protected Natural Areas, IOP Conf. Series: Earth and Environmental Science, 2020, vol. 607, p. 012019. https://doi.org/10.1088/1755-1315/607/1/012019

  7. Gorlenko, V.M., Dubinina, G.A., and Kuznetsov, S.I., The Ecology of Aquatic Microorganisms, Stuttgart: E. Schweizerbartsche Verlagsbuchhandlung, 1983.

    Google Scholar 

  8. Han, X., Schubert, C.J., Fiskal, A., Dubois, N., and Lever, M.A., Eutrophication as a driver of microbial community structure in Lake sediments, Environ. Microbiol., 2020, vol. 22. pp. 3446–3462.

    Article  CAS  PubMed  Google Scholar 

  9. Hu, W., Pan, J., Wang, B., Guo, J., Li, M., and Xu, M., Metagenomic insights into the metabolism and evolution of a new Thermoplasmata order (Candidatus Gimiplasmatales), Environ. Microbiol., 2021, vol. 23, pp. 3695–3709.

    Article  CAS  PubMed  Google Scholar 

  10. Kadnikov, V.V., Mardanov, A.V., Beletsky, A.V., Banks, D., Pimenov, N.V., Frank, Y.A., Karnachuk, O.V., and Ravin, N.V., A metagenomic window into the 2-km-deep terrestrial subsurface aquifer revealed multiple pathways of organic matter decomposition, FEMS Microbiol. Ecol., 2018, vol. 94, p. fiy152.

    Article  CAS  Google Scholar 

  11. Kadnikov, V.V., Savvichev, A.S., Mardanov, A.V., Beletsky, A.V., Merkel, A.Y., Ravin, N.V., and Pimenov, N.V., Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe, Antonie van Leeuwenhoek, 2019, vol. 112, pp. 1801–1814. https://doi.org/10.1007/s10482-019-01308-1

    Article  CAS  PubMed  Google Scholar 

  12. Kuznetsov, S.I., Mikroflora ozer i ee geokhimicheskaya deyatel’nost’ (Lake Microflora and Its Geochemichal Activity), Leningrad: Nauka, 1970.

  13. Kuznezow, S.I. and Gorlenko, V.M., Limnologische und Mikrobiologische Eigenschaften von Karstseen der A.S.R. Mari, Arch. Hydrobiol., 1973, vol. 71, no. 4, pp. 475–486.

    Google Scholar 

  14. Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.A., and Hugenholtz, P., A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life, Nat. Biotechnol., 2018, vol. 36, pp. 996–1004.

    Article  CAS  PubMed  Google Scholar 

  15. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W., CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res., 2015, vol. 25, pp. 1043–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pimenov, N.V. and Bonch-Osmolovskaya, E.A., In situ activity studies in thermal environments, in Extremophiles. Methods in Microbiology, Rainey, F.A. and Oren, A., Eds., Elsevier, Academic Press, 2006, vol. 35, pp. 29–53.

  17. Rinke, C., Rubino, F., Messer, L.F., Youssef, N., Parks, D.H., Chuvochina, M., Brown, M., Jeffries, T., Tyson, G.W., Seymour, J.R., and Hugenholtz, P., A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.), ISME J., 2019, vol. 13, pp. 663–675. https://doi.org/10.1038/s41396-018-0282-y

    Article  CAS  PubMed  Google Scholar 

  18. Savvichev, A.S., Rusanov, I.I., Rogozin, D.Yu., Zakharova, E.E., Lunina, O.N., Bryantseva, I.A., Yusupov, S.K., Pimenov, N.V., Degermendzhi, A.G., and Ivanov, M.V., Microbiological and isotopic geochemical investigations of meromictic Lakes in Khakasia in winter, Microbiology (Moscow), 2005, vol. 74, no. 4, pp. 477–486.

    Article  CAS  Google Scholar 

  19. Savvichev, A.S., Lunina, O.N., Rusanov, I.I., Zakharova, E.E., Veslopolova, E.F., and Ivanov, M.V., Microbiological and isotopic geochemical investigation of Lake Kislo-Sladkoe, a meromictic water body at the Kandalaksha Bay shore (White Sea), Microbiology (Moscow), 2014, vol. 83, pp. 56–66.

    Article  CAS  Google Scholar 

  20. Savvichev, A., Rusanov, I., Dvornikov, Y., Kadnikov, V., Kallistova, A., Veslopolova, E., Chetverova, A., Leibman, M., Sigalevich, P., Pimenov, N., Ravin, N., and Khomutov, A., The water column of the Yamal tundra Lakes as a microbial filter preventing methane emission, Biogeosciences, 2021, vol. 18, pp. 2791–2807. https://doi.org/10.5194/bg-18-2791

    Article  CAS  Google Scholar 

  21. Zemskaya, T.I., Bukin, S., Lomakina, A.V., and Pavlova, O.N., Microorganisms in the sediments of Lake Baikal, the deepest and oldest Lake in the world, Microbiology (Moscow), 2021, vol. 90, pp. 298–313.

    Article  CAS  Google Scholar 

  22. Zheng, P.F., Wei, Z., Zhou, Y., Li, Q., Qi, Z., Diao, X., and Wang, Y., Genomic evidence for the recycling of complex organic carbon by novel Thermoplasmatota clades in deep-sea sediments, mSystems, 2022, vol. 7, p. e00077-22.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhou, Z., Liu, Y., Lloyd, K.G., Pan, J., Yang, Y., Gu, J.-D., and Li, M., Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME J., 2019, vol. 13, pp. 885–901. https://doi.org/10.1038/s41396-018-0321-8

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of the Kichiyer Sanatorium (Republic of Mari El) for organizational assistance in setting up a temporary laboratory.

Funding

Field works, sample processing, and molecular-biological data analysis performed by researchers of the Federal Research Center of Biotechnology of the Russian Academy of Sciences were supported by the Russian Science Foundation, project no. 22-14-00038. Radiotracer experiments were performed by I.I. Rusanov in the framework of State Assignment of the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kadnikov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human or animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by E. Makeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadnikov, V.V., Savvichev, A.S., Rusanov, I.I. et al. Metagenomic Analysis of Bottom Sediments of the Karst Meromictic Lake Black Kichier Revealed Abundant Unculturable Thermoplasmatota. Microbiology 93, 128–133 (2024). https://doi.org/10.1134/S0026261723604359

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723604359

Keywords:

Navigation