Skip to main content
Log in

Biotechnological Potential of the Soil Microbiome

  • SHORT COMMUNICATIONS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Molecular biological techniques and bioinformatic analysis were used to investigate the phylogenetic and functional diversity of the prokaryotic complex of soil microcosms. The dominant organisms of the hydrolytic community were different in the samples from different climatic zones. In the soils subject to anthropogenic or abiogenic load, apart from decreased diversity and abundance of prokaryotes, the number of the genes marking the ability to degrade xenobiotics, as well as those encoding nitrogen conversion and metabolism of vitamins and cofactors, was found to increase. Under heavy oil contamination, the bacterial community was capable of nitrification; its role increased in the lower horizons of the soil profile. The patterns revealed in the work indicate high metabolic potential of the prokaryotic component of the studied soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bürgmann, H., Widmer, F., Sigler, W.V., and Zeyer, J., mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil, Appl. Environ. Microbiol., 2003, vol. 69, pp. 1928–1935. https://doi.org/10.1128/AEM.69.4.1928-1935.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hallin, S., Jones, C.M., Schloter, M., and Philippot, L., Relationship between n-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment, ISME J., 2009, vol. 53, pp. 597–605. https://doi.org/10.1038/ismej.2008.128

    Article  CAS  Google Scholar 

  3. Hendrickx, B., Junca, H., Vosahlova, J., Lindner, A., Ruegg, I., Bucheli-Witschel, M., Faber, F., Egli, T., Mau, M., Pieper, D.H., Top, E.M., Dejonghe, W., Bastiaens, L., and Springael, D., Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: Distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site, J. Microbiol. Methods, 2006, vol. 64, pp. 250–265. https://doi.org/10.1016/j.mimet.2005.04.018

    Article  CAS  PubMed  Google Scholar 

  4. Henry, S., Baudouin, E., López-Gutiérrez, J.C., Martin-Laurent, F., Brauman, A., and Philippot, L., Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR, J. Microbiol. Methods, 2004, vol. 59, pp. 327–335. https://doi.org/10.1016/J.MIMET.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  5. Gogmachadze, L.G., Khusnetdinova, K.A., Stepanov, A.L., and Kravchenko, I.K., Microcosm study of ammonium and drying impact on methane oxidation in agricultural soil, J. Agricult. Environ., 2023, vol. 36, no. 8, pp. 10–22. https://doi.org/10.23649/JAE.2023.36.7

    Article  Google Scholar 

  6. Langille, M., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J., Clemente, J., Burkepile, D., Vega Thurber, R., Knight, R., Beiko, R., and Huttenhower, C., Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nat. Biotechnol., 2013, vol. 31, no. 9, pp. 814–21. https://doi.org/10.1038/nbt.2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manucharova, N.A., Pozdnyakov, L.A., Vlasova, A.P., Yanovich, A.S., Ksenofontova, N.A., Kovalenko, M.A., Stepanov, P.Y., Gennadiev, A.N., Golovchenko, A.V., and Stepanov, A.L., Metabolically active prokaryotic complex in grassland and forests’ sod-podzol under polycyclic aromatic hydrocarbon influence, Forests (Basel), 202, vol. 12, no. 8, pp. 1103–1117. https://doi.org/10.3390/f12081103

  8. Manucharova, N.A., Ksenofontova, N.A., Belov, A.A., Kamenskiy, N.N., Arzamazova, A.V., Zenova, G.M., Kinzhaev, R.R., Trofimov, S.Y., and Stepanov, A.L., Prokaryotic component of oil-contaminated oligotrophic peat soil under different levels of mineral nutrition: biomass, diversity, and activity, Euras. Soil Sci., 2021, vol. 54, no. 1, pp. 89–97. https://doi.org/10.31857/s0032180x2101010x

    Article  CAS  Google Scholar 

  9. Markowitz, V.M., Chen, I.-M.A., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Jacob, B., Huang, J., Williams, P., Huntemann, M., Anderson, I., Mavromatis, K., Ivanova, N.N., and Kyrpides, N.C., IMG: the Integrated Microbial Genomes database and comparative analysis system, Nucleic Acids Res., 2012, vol. 40. Database issue, pp. D115–122. https://doi.org/10.1093/nar/gkr1044

  10. Samarghandi, M.R., Arabestani, M.R., Zafari, D., Rahmani, A.R., Afkhami, A., and Godini, K., Bioremediation of actual soil samples with high levels of crude oil using a bacterial consortium isolated from two polluted sites: investigation of the survival of the bacteria, Global NEST J., 2018, vol. 20, pp. 432–438.

    Article  CAS  Google Scholar 

  11. Sutton, N.B., Maphosa, F., Morillo, J.A., Al-Soud, W.A., Langenhoff, A.A.M., Grotenhuis, T., Rijnaarts, H.H.M., and Smidt, H., Impact of long-term diesel contamination on soil microbial community structure, Appl. Environ. Microbiol., 2013, vol. 79, pp. 619–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R., Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microbiol., 2007, vol. 73, no. 16, pp. 5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, Q., Duan, B., Yang, R., Zhao, Y., and Zhang, L., Screening and identification of chitinolytic actinomycetes and study on the inhibitory activity against Turfgrass Rootrot disease fungi, J. Biosci. Medic., 2015, vol. 3, p. 56065. https://doi.org/10.4236/jbm.2015.33009

    Article  CAS  Google Scholar 

Download references

Funding

The composition of soil microbial communities was determined with financial support of the Russian Science Foundation, grant no. 21-14-00076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Manucharova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Timchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manucharova, N.A., Vlasova, A.P., Kovalenko, M.A. et al. Biotechnological Potential of the Soil Microbiome. Microbiology 93, 145–148 (2024). https://doi.org/10.1134/S0026261723604335

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723604335

Keywords:

Navigation