Skip to main content
Log in

Biotechnological Potential of Hydrolytic Prokaryotic Component in Soils

  • TAXONOMIC AND FUNCTIONAL DIVERSITY OF SOIL MICROBIOMES
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The phylogenetic and functional diversity of the prokaryotic complex with a biotechnological potential (decomposing biopolymers and hydrocarbons; capable of synthesizing secondary metabolites; and involved in nitrogen fixation) in soils and associated ecosystems has been studied. In order to identify the specific features in the development of metabolically active prokaryotes with biotechnological potential, the patterns of their distribution and the dependence of functional activity on the main environmental factors have been established using molecular biological and bioinformatics approaches. The range of the studied samples includes modern soils (Volgograd, Tula, and Moscow oblasts; Siberia; and the northern part of Central Kamchatka), relict habitats (Volgograd oblast and Central Kamchatka), and permafrost soils of the Antarctic (King George Island). The impact of anthropogenic and abiogenic loads on the development of the prokaryotic community is considered. Along with a decrease in the diversity and abundance of prokaryotes, the number of genes marking the ability of community to biodegrade xenobiotics increases in the soils exposed to anthropogenic or abiogenic loads, as well as of the genes coding for nitrogen transformations and the level of metabolism of cofactors and vitamins. The bacterial complex is capable of nitrification at a high oil pollution of soil and its role increases in the lower layers of the soil profile. Archaea play a leading role in the nitrification in undisturbed soils. The observed patterns suggest a high metabolic potential of the prokaryotic component in the examined objects and open up the opportunities for biotechnological use of the strains isolated from relict habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. G. Dobrovolskaya, A. V. Golovchenko, E. N. Yurchenko, A. V. Yakushev, N. A. Manucharova, L. V. Lysak, and N. V. Kostina, “Bacterial communities of regressive spots in ombrotrophic bogs: structure and functions,” Microbiology (Moscow) 89 (1), 107–114 (2020). https://doi.org/10.1134/S0026261720010063

    Article  Google Scholar 

  2. E. M. Kol’tsova, Candidate’s Dissertation in Biology (Moscow, 2017).

  3. N. A. Kryazhevskikh, E. V. Demkina, N. G. Loiko, R. V. Baslerov, T. V. Kolganova, V. S. Soina, N. A. Manucharova, V. F. Gal’chenko, and G. I. El’-Registan, “Comparison of the adaptive potential of the Arthrobacter oxydans and Acinetobacter lwoffii isolates from permafrost sedimentary rock and the analogous collection strains,” Microbiology (Moscow) 82 (1), 29–42 (2013). https://doi.org/10.1134/S0026261713010050

    Article  Google Scholar 

  4. I. P. Solyanikova, N. E. Suzina, A. L. Mulyukin, G. I. El’-Registan, and L. A. Golovleva, “Effect of a dormant state on the xenobiotic-degrading strain Pseudomonas fluorescens 26K,” Microbiology (Moscow) 82 (5), 562–571 (2013). https://doi.org/10.1134/S0026261713050135

    Article  Google Scholar 

  5. E. P. Feofilova, “Deceleration of vital activity as a universal biochemical mechanism ensuring adaptation of microorganisms to stress factors: a review,” Appl. Biochem. Microbiol. 39 (1), 1–18 (2003). https://doi.org/10.1023/A:1021774523465

    Article  Google Scholar 

  6. G. I. El’-Registan, “Rest as a form of adaptation of microorganisms,” in Survival Mechanisms of Bacteria (Meditsina, Moscow, 2005), pp. 11–142. https://search. rsl.ru/ru/record/01002681279

    Google Scholar 

  7. G. I. El-Registan, A. L. Mulyukin, Yu. A. Nikolaev, N. E. Suzina, V. F. Gal’chenko, and V. I. Duda, “Adaptogenic functions of extracellular autoregulators of microorganisms,” Microbiology (Moscow) 75 (4), 380–389 (2006). https://doi.org/10.1134/S0026261706040035

    Article  Google Scholar 

  8. W. R. Abraham, B. Nogales, P. N. Golyshin, D. H. Pieper, and K. N. Timmis, “Polychlorinated biphenyl-degrading microbial communities in soils and sediments,” Curr. Opin. Microbiol. 5 (3), 246–253 (2002). https://doi.org/10.1016/s1369-5274(02)00323-5

    Article  Google Scholar 

  9. K. L. Adair and E. Schwartz, “Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA,” Microb. Ecol. 56, 420–426 (2008). https://doi.org/10.1007/s00248-007-9360-9

    Article  Google Scholar 

  10. M. J. Anderson, “A new method for non-parametric multivariate analysis of variance,” Austral Ecol. 26, 32–46 (2001). https://www.pelagicos.net/MARS6300/ homework/hw6/Anderson_2001.pdf

    Google Scholar 

  11. M. Bartilson, I. Nordlund, and V. Shingler, “Nucleotide sequence and expression of the catechol 2,3-dioxygenaseencoding gene of phenol catabolizing Pseudomonas CF600,” Gene 85, 233–238 (1989). https://doi.org/10.1016/0378-1119(89)90487-3

    Article  Google Scholar 

  12. R. Boden, L. P. Hutt, and A. W. Rae, “Reclassification of Thiobacillusaquaesulis (Wood & Kelly, 1995) as Annwoodiaaquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov.within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales,” Int. J. Syst. Evol. Microbiol. 67, 1191–1205 (2017). https://doi.org/10.1099/ijsem.0.001927

    Article  Google Scholar 

  13. J. R. Bray and J. T. Curtis, “An ordination of the upland forest communities of Southern Wisconsin,” Ecol. Monogr. 27 (4), 325–349 (1957). https://doi.org/10.2307/1942268

    Article  Google Scholar 

  14. H. Bürgmann, F. Widmer, W. V. Sigler, and J. Zeyer, “mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil,” Appl. Environ. Microbiol. 69, 1928–1935 (2003). https://doi.org/10.1128/AEM.69.4.1928-1935.2003

    Article  Google Scholar 

  15. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, et al., “QIIME allows analysis of high-throughput community sequencing data,” Nat. Methods 7 (5), 335–336 (2010). https://doi.org/.1038/nmeth.f.303

    Article  Google Scholar 

  16. J. Chen, A. D. Del Genio, B. E. Carlson, and M. G. Bosilovich, “The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. P. I: Long-term trend,” J. Clim. 21, 2611–2633 (2008). https://doi.org/10.1175/2007JCLI2011.1

    Article  Google Scholar 

  17. T. Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber, et al., “Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB,” Appl. Environ. Microbiol. 72 (7), 5069–5072 (2006). https://doi.org/10.1128/AEM.03006-05

    Article  Google Scholar 

  18. R. C. Edgar, “Search and clustering orders of magnitude faster than BLAST,” Bioinformatics 26 (19), 2460–2461 (2010). https://doi.org/10.1093/bioinformatics/btq461

    Article  Google Scholar 

  19. D. P. Faith and A. M. Baker, “Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges,” Evol. Bioinf. Online 2, 121–128 (2006). https://doi.org/10.4137/ebo.s0

    Article  Google Scholar 

  20. J. C. Gaby and D. H. Buckley, “A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria,” Database (Oxford) 2014, bau001 (2014). https://doi.org/10.1093/database/bau001

    Article  Google Scholar 

  21. S. Hallin, C. M. Jones, M. Schloter, and L. Philippot, “Relationship between n-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment,” ISME J. 53, 597–605 (2009). https://doi.org/10.1038/ismej.2008.128

    Article  Google Scholar 

  22. S. Harayama and M. Rekik, “Bacterial aromatic ring cleavage enzymes are classified into two different gene families,” J. Biol. Chem. 264, 15328–15333 (1989). https://www.jbc.org/article/S0021-9258(19)84830-5/pdf

    Article  Google Scholar 

  23. B. Hendrickx, H. Junca, J. Vosahlova, A. Lindner, I. Ruegg, M. Bucheli-Witschel, F. Faber, et al., “Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site,” J. Microbiol. Methods 64, 250–265 (2006). https://doi.org/10.1016/j.mimet.2005.04.018

    Article  Google Scholar 

  24. S. Henry, E. Baudouin, J. C. López-Gutiérrez, F. Martin–Laurent, A. Brauman, and L. Philippot, “Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR,” J. Microbiol. Methods 59, 327–335 (2004). https://doi.org/10.1016/J.MIMET.2004.07.002

    Article  Google Scholar 

  25. A. Hiraishi and Y. Ueda, “Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonasrosea as Rhodoplanesroseus comb. nov. and Rhodoplaneselegans sp. nov.,” Int. J. Syst. Bacteriol. 44, 665–673 (1994). https://doi.org/10.1099/00207713-44-4-665

    Article  Google Scholar 

  26. M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe, “KEGG for integration and interpretation of large-scale molecular data sets,” Nucleic Acids Res. 40 (Database issue), 109–114 (2012). https://doi.org/10.1093/nar/gkr988

    Article  Google Scholar 

  27. A. S. Kaprelyants, G. V. Mukamolova, H. M. Davey, and D. B. Kell, “Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus by flow cytometry and cell sorting,” Appl. Environ. Microbiol. 62 (4), 1311–1316 (1996). https://doi.org/10.1128/aem.62.4.1311-1316.1996

    Article  Google Scholar 

  28. M. Kok, R. Oldenhuis, M. P. G. van der Linden, P. Raatjes, J. Kingma, and P. H. van Lelyveld, “The Pseudomonas oleovorans alkane hydroxylase gene, sequence and expression,” J. Biol. Chem. 264, 5435–5441 (1989). https://doi.org/10.1016/S0021-9258(18)83564-5

    Article  Google Scholar 

  29. M. Langille, J. Zaneveld, J. G. Caporaso, D. McDonald, D. Knights, J. Reyes, J. Clemente, D. Burkepile, et al., “Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences,” Nat. Biotechnol. 31 (9), 814–821 (2013). https://doi.org/10.1038/nbt.2676

    Article  Google Scholar 

  30. N. A. Manucharova, N. A. Ksenofontova, A. A. Belov, N. N. Kamenskiy, A. V. Arzamazova, G. M. Zenova, R. R. Kinzhaev, S. Y. Trofimov, and A. L. Stepanov, “Prokaryotic component of oil-contaminated oligotrophic peat soil under different levels of mineral nutrition: biomass, diversity, and activity,” Eurasian Soil Sci. 54 (1), 89–97 (2021). https://doi.org/10.31857/s0032180x2101010x

    Article  Google Scholar 

  31. V. M. Markowitz, I.-M. A. Chen, K. Palaniappan, K. Chu, E. Szeto, Y. Grechkin, A. Ratner, et al., “IMG: the Integrated Microbial Genomes database and comparative analysis system,” Nucleic Acids Res. 40 (Database issue), D115-22 (2012). https://doi.org/10.1093/nar/gkr1044

    Article  Google Scholar 

  32. S. J. McIlroy and P. H. Nielsen, The Prokaryotes, Ed. by E. Rosenberg et al. (Springer, Berlin, 2014), pp. 863–889. https://doi.org/10.1007/978-3-642-39044-9

  33. D. Nichols, K. Lewis, J. Orjala, S. Mo, R. Ortenberg, P. O’Connor, C. Zhao, P. Vouros, T. Kaeberlein, and S. S. Epstein, “Short peptide induces an “uncultivable” microorganism to grow in vitro,” Appl. Environ. Microbiol. 74 (15), 4889–4897 (2008). https://doi.org/10.1128/AEM.00393-08

    Article  Google Scholar 

  34. F. Pantanella, F. Berlutti, C. Passariello, S. Sarli, C. Morea, and S. Schippa, “Violacein and biofilm production in Janthinobacteriumlividum,” J. Appl. Microbiol. 102 (4), 992–999 (2007). https://doi.org/10.1111/j.1365-2672.2006.03155.x

    Article  Google Scholar 

  35. M. N. Price, P. S. Dehal, and A. P. Arkin, “FastTree 2—Approximately Maximum-Likelihood Trees for large alignments,” PLoS One 5 (3), e9490 (2010). https://doi.org/10.1371/journal.pone.0009490

    Article  Google Scholar 

  36. J. Rotthauwe and K. Witzel, “The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations,” Appl. Environ. Microbiol. 63, 4704–4712 (1997). https://doi.org/10.1128/aem.63.12.4704-4712.1997

    Article  Google Scholar 

  37. B. Somanadhan, S. R. Kotturi, C. Yan Leong, R. P. Glover, Y. Huang, H. Flotow, A. D. Buss, M. J. Lear, and M. S. Butler, “Isolation and synthesis of falcitidin, a novel myxobacterial-derived acyltetrapeptide with activity against the malaria target falcipain-2,” J. Antibiot. (Tokyo) 66 (5), 259–264 (2013). https://doi.org/10.1038/ja.2012.123

    Article  Google Scholar 

  38. X. Su, X. Chen, J. Hu, C. Shen, and L. Ding, “Exploring the potential environmental functions of viable but non-culturable bacteria,” World J. Microbiol. Biotechnol. 29 (12), 2213–2218 (2013). https://doi.org/10.1007/s11274-013-1390-5

    Article  Google Scholar 

  39. T. Itoh, K. Yamanoi, T. Kudo, M. Ohkuma, and T. Takashina, “Aciditerrimonas ferrireducens gen. nov., sp. nov., an iron-reducing thermoacidophilic actinobacterium isolated from a solfataric field,” Int. J. Syst. Evol. Microbiol. 61, 1281–1285 (2011). https://doi.org/10.1099/ijs.0.023044-0

    Article  Google Scholar 

  40. Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, “Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy,” Appl. Environ. Microbiol. 73 (16), 5261–5267 (2007). https://doi.org/10.1128/AEM.00062-07

    Article  Google Scholar 

  41. L. G. Whyte, A. Schultz, J. B. van Beiden, A. P. Luz, V. Pellizari, D. Labbé, and C. W. Greer, “Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils,” FEMS Microbiol. Ecol. 41, 141–150 (2002). https://doi.org/10.1111/j.1574-6941.2002.tb00975.x

    Article  Google Scholar 

Download references

Funding

This study was supported by the state budget (project no. 122090800042-2 of the Faculty of Soil Science, Lomonosov Moscow State University) according to the Executive Order of the Government of the Russian Federation no. 2515-r of September 2022 aimed at the implementation of an important innovation project of the state level in support of the development of national system for monitoring of climatically active substances. The microbiological research was supported by the Russian Science Foundation (project no. 21-14-00076). Sampling was performed under the budget project “Soil Microbiomes: Genomic Diversity, Functional Activity, Geography, and Biotechnological Potential” no. 121040800174-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Manucharova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manucharova, N.A., Kovalenko, M.A., Alekseeva, M.G. et al. Biotechnological Potential of Hydrolytic Prokaryotic Component in Soils. Eurasian Soil Sc. 56, 558–572 (2023). https://doi.org/10.1134/S1064229323600082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323600082

Keywords:

Navigation