Skip to main content
Log in

Destruction of Biofilms of Gram-Positive and Gram-Negative Bacteria by Serine Protease PAPC from Aspergillus ochraceus

  • SHORT COMMUNICATIONS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Infections associated with biofilm formation by gram-positive and gram-negative microorganisms cause difficulty in therapy and are prone to transition into chronic forms. Approaches to degradation of the biofilm matrix are therefore in demand. In the present work, we show that recombinant PAPC serine protease from Aspergillus ochraceus were able to degrade mature biofilms formed by a number of gram-positive and gram-negative bacteria by 15‒20% at 50 µg/mL. At 100 µg/mL, the biomass of S. aureus and P. aeruginosa biofilms decreased by 50%. Thus, the PAPC may be a promising agent for biofilm removal and enhance the efficiency of antimicrobial therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Algburi, A., Comito, N., Kashtanov, D., Dicks, L.M., and Chikindas, M.L., Control of biofilm formation: antibiotics and beyond, Appl. Environ. Microbiol., 2017, vol. 83, no. 3, p. e02508-16.

    PubMed  PubMed Central  Google Scholar 

  2. Baidamshina, D.R., Trizna, E.Y., Holyavka, M.G., Bogachev, M.I., Artyukhov, V.G., Akhatova, F.S., Rozhina, E.V., Fakhrullin, R.F., Kayumov, A.R., Targeting microbial biofilms using Ficin, a nonspecific plant protease, Sci. Rep., 2017, vol. 7, no. 1, p. 46068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greer, H.M., Overton, K., Ferguson, M.A., Spain, E.M., Darling, L.E., Núñez, M.E., and Volle, C.B., Extracellular polymeric substance protects some cells in an Escherichia coli biofilm from the biomechanical consequences of treatment with magainin 2, Microorganisms, 2021, vol. 9, no. 5, p. 976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaplan, J.B., Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses, J. Dent. Res., 2010, vol. 89, no. 3, pp. 205–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaplan, J.B., Mlynek, K.D., Hettiarachchi, H., Alamneh, Y.A., Biggemann, L., Zurawski, D.V., Black, C.C., Bane, C.E., Kim, R.K., and Granick, M.S., Extracellular polymeric substance (EPS)-degrading enzymes reduce staphylococcal surface attachment and biocide resistance on pig skin in vivo, PLoS One, 2018, vol. 13, no. 10, p. e0205526.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Khan, J., Tarar, S.M., Gul, I., Nawaz, U., and Arshad, M., Challenges of antibiotic resistance biofilms and potential combating strategies: a review, 3 Biotech, 2021, vol. 11, pp. 1–15.

  7. Khoramian, B., Emaneini, M., Bolourchi, M., Niasari-Naslaji, A., Gorganzadeh, A., Abani, S., and Hovareshti, P., Therapeutic effects of a combined antibiotic-enzyme treatment on subclinical mastitis in lactating dairy cows, Vet. Med. (Praha), 2016, vol. 61, pp. 237–242.

    Article  CAS  Google Scholar 

  8. Komarevtsev, S.K., Evseev, P.V., Shneider, M.M., Popova, E.A., Tupikin, A.E., Stepanenko, V.N., Kabilov, M.R., Shabunin, S.V., Osmolovskiy, A.A., and Miroshnikov, K.A., Gene analysis, cloning, and heterologous expression of protease from a micromycete Aspergillus ochraceus capable of activating protein C of blood plasma, Microorganisms, 2021, vol. 9, p. 1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lahiri, D., Nag, M., Banerjee, R., Mukherjee, D., Garai, S., Sarkar, T., Dey, A., Sheikh, H.I., Pathak, S.K., Edinur, H.A., Pati, S., and Ray, R.R., Amylases: biofilm inducer or biofilm inhibitor?, Front. Cell. Infect. Microbiol., 2021, vol. 11, p. 660048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Melchior, M.B., Vaarkamp, H., and Fink-Gremmels, J., Biofilms: a role in recurrent mastitis infections?, Vet. J., 2006, vol. 171, no. 3, pp. 398–407.

    Article  CAS  PubMed  Google Scholar 

  11. O’Toole, G.A. and Kolter, R., Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol. Microbiol., 1998, vol. 28, no. 3, pp. 449–461.

    Article  PubMed  Google Scholar 

  12. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1989, vol. 49, no. 2, p. 411.

    Google Scholar 

  13. Sauer, K., Stoodley, P., Goeres, D.M., Hall-Stoodley, L., Burmolle, M., Stewart, P.S., and Bjarnsholt, T., The biofilm life cycle: expanding the conceptual model of biofilm formation, Nat. Rev. Microbiol., 2022, vol. 20, pp. 608–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwartz, S.H., An overview of the Schwartz theory of basic values, Online Readings in Psychology and Culture, 2012, vol. 2, no. 1, p. 11.

    Article  Google Scholar 

  15. Taglialegna, A., Lasa, I., and Valle, J., Amyloid structures as biofilm matrix scaffolds, J. Bacteriol., 2016, vol. 198, no. 19, pp. 2579–2588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Usmani, Y., Ahmed, A., Faizi, S., Versiani, M.A., Shamshad, S., Khan, S., and Simjee, S.U., Antimicrobial and biofilm inhibiting potential of an amide derivative [N-(2′, 4′-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide] of ursolic acid by modulating membrane potential and quorum sensing against colistin resistant Acinetobacter baumannii, Microb. Pathog., 2021, vol. 157, p. 104997.

    Article  CAS  PubMed  Google Scholar 

  17. Vuotto, C. and Donelli, G., Novel treatment strategies for biofilm-based infections, Drugs, 2019, vol. 79, pp. 1635–1655.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project no. FZSM-2022-0017.

Author information

Authors and Affiliations

Authors

Contributions

Diana Rafisovna Baydamshina, Elena Yuryevna Trizna, Sergey Konstantinovich Komarevtsev, Aya Rafia Nasr, Alexander Andreevich Osmolovskii—experimental procedures. Konstantin Anatolyevich Miroshnikov, Airat Rashitovich Kayumov, Elena Yuryevna Trizna—work management; all authors contributed to the writing and approval of the manuscript.

Corresponding author

Correspondence to D. R. Baidamshina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baidamshina, D.R., Nasr, A.R., Komarevtsev, S.K. et al. Destruction of Biofilms of Gram-Positive and Gram-Negative Bacteria by Serine Protease PAPC from Aspergillus ochraceus. Microbiology 93, 227–231 (2024). https://doi.org/10.1134/S0026261723604281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723604281

Keywords:

Navigation