Skip to main content
Log in

Effect of Subtilisin-like Proteinase of Bacillus pumilus 3–19 on Pseudomonas aeruginosa Biofilms

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is a common device-associated pathogen and also a model object in biofilm research. In this study biofilm growth dynamics of Pseudomonas aeruginosa RSC-2 strain on different culture media was described. It was shown that Mueller-Hinton broth is more suitable for biofilm growth than Lysogeny broth. In vitro biofilm surface was investigated using scanning electron microscopy. Staining with Congo red dye demonstrated that the observed strain can produce amyloid-like fibers that play important role in biofilms and are proposed to be a target for proteinase treatment. The effect of subtilisin-like proteinase of Bacillus pumilus 3–19, trypsin, and proteinase K on biofilm was studied. All of these proteinases can destroy biofilms depending on the time of incubation and enzyme activity. After 4 h of incubation, 18–47% of biofilms were destroyed, which can be linked to the resistance of amyloid proteins to proteolytic degradation. However, an increase in the incubation time (to 24 h) led to complete destruction of biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geerlings, S. (2016). Clinical presentations and epidemiology of urinary tract infections. Microbiol Spectrum, 4, 0002–2012. https://doi.org/10.1128/microbiolspec.UTI-0002-2012.

    Google Scholar 

  2. Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews. Microbiology, 13, 269–284. https://doi.org/10.1038/nrmicro3432.

    Article  Google Scholar 

  3. Delcaru, C., Alexandru, I., Podgoreanu, P., Grosu, M., Stavropoulos, E., Chifiriuc, M. C., & Lazar, V. (2016). Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens. https://doi.org/10.3390/pathogens5040065.

  4. Tim TN (2014) Pseudomonas aeruginosa biofilm infections: from molecular biofilm biology to new treatment possibilities. https://doi.org/10.1111/apm.12335.

  5. Tielen, P., Rosin, N., Meyer, A. K., Dohnt, K., Haddad, I., Jänsch, L., Jahn, D., et al. (2013). Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions. In PLoS ONE. https://doi.org/10.1371/journal.pone.0071845.

    Google Scholar 

  6. Lassek, C., Burghartz, M., Chaves-Moreno, D., Otto, A., Hentschker, C., Fuchs, S., Riedel, K., et al. (2015). A metaproteomics approach to elucidate host and pathogen protein expression during catheter-associated urinary tract infections (CAUTIs). Molecular & Cellular Proteomics, 14, 989–1008. https://doi.org/10.1074/mcp.M114.043463.

    Article  Google Scholar 

  7. Vandecandelaere I, Van Nieuwerburgh F, Deforce D, Coenye, T (2017) Metabolic activity, urease production, antibiotic resistance and virulence in dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus. PLoS One https://doi.org/10.1371/journal.pone.0172700.

  8. Alhede, M., Alhede, M., & Bjarnsholt, T. (2014). Novel targets for treatment of Pseudomonas aeruginosa biofilms. Antibiofilm Agents. Springer Series on Biofilms, 8, 257–272. https://doi.org/10.1007/978-3-642-53833-9_12.

    Article  Google Scholar 

  9. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C., & Mattick, J. S. (2002). Extracellular DNA required for bacterial biofilm formation. Science., 295, 1487–1487. https://doi.org/10.1126/science.295.5559.1487.

    Article  Google Scholar 

  10. Erskine, E., MacPhee, C. E., & Stanley-Wall, N. R. (2018). Functional amyloid and other protein fibers in the biofilm matrix. Journal of Molecular Biology, 430, 3642–3656. https://doi.org/10.1016/j.jmb.2018.07.026.

    Article  Google Scholar 

  11. Fong, J., & Yildiz, F. H. (2015). Biofilm matrix proteins. Microbiology Spectrum. https://doi.org/10.1128/microbiolspec.MB-0004-2014.

  12. Larsen, P., Nielsen, J. L., Dueholm, M. S., Wetzel, R., Otzen, D., & Nielsen, P. H. (2007). Amyloid adhesins are abundant in natural biofilms. Environmental Microbiology, 9, 3077–3090. https://doi.org/10.1111/j.1462-2920.2007.01418.x.

    Article  Google Scholar 

  13. Chapman, M. R., Robinson, L. S., Pinkner, J. S., Roth, R., Heuser, J., Hammar, M., Normark, S., & Hultgren, S. J. (2012). Role of Escherichia coli curli operons in directing amyloid Fiber formation. Science., 295, 851–855. https://doi.org/10.1126/science.1067484.

    Article  Google Scholar 

  14. Hobley, L., Harkins, C., MacPhee, C. E., & Stanley-Wall, N. R. (2015). Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiology Reviews, 39, 649–669. https://doi.org/10.1093/femsre/fuv015.

    Article  Google Scholar 

  15. Evans, M. L., & Chapman, M. R. (2014). Curli biogenesis: order out of disorder. Biochimica et Biophysica Acta, 1843, 1551–1558. https://doi.org/10.1016/j.bbamcr.2013.09.010.

    Article  Google Scholar 

  16. Van Gerven, N., Van der Verren, S. E., Reiter, D. M., & Remaut, H. (2018). The role of functional amyloids in bacterial virulence. Journal of Molecular Biology, 430, 3657–3684. https://doi.org/10.1016/j.jmb.2018.07.010.

    Article  Google Scholar 

  17. Dueholm, M. S., Albertsen, M., Otzen, D., & Nielsen, P. H. (2012). Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS One. https://doi.org/10.1371/journal.pone.0051274.

  18. Dueholm, M. S., Søndergaard, M. T., Nilsson, M., Christiansen, G., Stensballe, A., Overgaard, M. T., Nielsen, P. H., et al. (2013). Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation. MicrobiologyOpen, 2, 365–382. https://doi.org/10.1002/mbo3.81.

    Article  Google Scholar 

  19. Rouse, S. L., Matthews, S. J., & Dueholm, M. S. (2018). Ecology and biogenesis of functional amyloids in Pseudomonas. Journal of Molecular Biology, 430, 3685–3695. https://doi.org/10.1016/j.jmb.2018.05.004.

    Article  Google Scholar 

  20. Pierre, H., Elchinger, C., Delattrec, S., & Faureab, O. R. (2015). Immobilization of proteinases on chitosan for the development of films with anti-biofilm properties. International Journal of Biological Macromolecules, 72, 1063–1068. https://doi.org/10.1016/j.ijbiomac.2014.09.061.

    Article  Google Scholar 

  21. Xu, Y., Moser, C., Al-Soud, W. A., et al. (2012). Culture-dependent and -independent investigations of microbial diversity on urinary catheters. Journal of Clinical Microbiology, 50, 3901–3908. https://doi.org/10.1128/JCM.01237-12.

  22. Balaban, N. P., Malikova, L. A., Mardanova, A. M., et al. (2007). Purification and characterization of a subtilisin-like proteinases secreted in the stationary growth phase of Bacillus amyloliquefaciens H2. Biochemistry (Moscow), 72, 459–460. https://doi.org/10.1134/S0006297907040141.

    Article  Google Scholar 

  23. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T. Science., 227, 680–685. https://doi.org/10.1038/227680a0.

    Google Scholar 

  24. O’Toole, G. A., & Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescence WCS365 proceeds via multiple convergent signaling pathways: a genetic analysis. Molecular Microbiology, 28, 449–461. https://doi.org/10.1046/j.1365-2958.1998.00797.x.

    Article  Google Scholar 

  25. Demidyuk, I. V., Kalashnikov, A. E., Gromova, T. Y., Gasanov, E. V., Safina, D. R., Zabolotskaya, M. V., Rudenskaya, G. N., & Kostrov, S. V. (2006). Cloning, sequencing, expression, and characterization of protealysin, a novel neutral proteinase from Serratia proteamaculans representing a new group of thermolysin-like proteinaseswith short N-terminal region of precursor. Protein Expression and Purification, 47, 551–561. https://doi.org/10.1016/j.pep.2005.12.005.

    Article  Google Scholar 

  26. Gophna, U., Barlev, M., Seijffers, R., Oelschlager, T. A., Hacker, J., & Ron, E. Z. (2001). Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infection and Immunity, 69, 2659–2665. https://doi.org/10.1128/IAI.69.4.2659-2665.2001.

    Article  Google Scholar 

  27. Watters, C. M., Burton, T., Kirui, D. K., & Millenbaugh, N. J. (2016). Enzymatic degradation of in vitro Staphylococcus aureus biofilms supplemented with human plasma. Infection and Drug Resistance, 9, 71–78. https://doi.org/10.2147/IDR.S103101.

    Google Scholar 

  28. Kayumov AR, Nureeva AA, Trizna EY, Gazizova GR, Bogachev MI, Shtyrlin NV, Shtyrlin YG et al. (2015) New derivatives of pyridoxine exhibit high antibacterial activity against biofilm-embedded Staphylococcus cells. BioMed Research International. https://doi.org/10.1155/2015/890968

  29. Davies, S. K., Fearn, S., Allsopp, L. P., Harrison, F., Ware, E., Diggle, S. P., Filloux, A., McPhail, D. S., & Bundy, J. G. (2017). Visualizing antimicrobials in bacterial biofilms: three-dimensional biochemical imaging using TOF-SIMS. In mSphere. https://doi.org/10.1128/mSphere.00211-17.

    Google Scholar 

  30. Powell, L. C., Pritchard, M. F., Ferguson, E. L., Powell, K. A., Patel, S. U., Rye, P. D., Sakellakou, S. M., Buurma, N. J., Brilliant, C. D., Copping, J. M., Menzies, G. E., Lewis, P. D., Hill, K. E., & Thomas, D. W. (2018). Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. NPJ Biofilms and Microbiomes. https://doi.org/10.1038/s41522-018-0056-3.

  31. Blanco, L. P., Evans, M. L., Smith, D. R., Badtke, M. P., & Chapman, M. R. (2012). Diversity, biogenesis and function of microbial amyloids. Trends in Microbiology, 20, 66–73. https://doi.org/10.1016/j.tim.2011.11.005.

    Article  Google Scholar 

  32. Chua SL, Yam JH, Hao P, Adav SS, Salido MM, Liu Y, Yang L et al. (2016) Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nature communications. https://doi.org/10.1038/ncomms10750

  33. Reichhardt, C., Jacobson, A. N., Maher, M. C., Uang, J., McCrate, O. A., Eckart, M., et al. (2015). Congo red interactions with curli-producing E. coli and native curli amyloid fibers. PLoS One. https://doi.org/10.1371/journal.pone.0140388.

  34. Barbara, T., Endry, N. P., Gibson, S. N., & Georg, M. G. (2013). Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnology Journal, 8, 97–109. https://doi.org/10.1002/biot.201200313.

    Article  Google Scholar 

  35. Vandecandelaere, I., Depuydt Nelis, H. J., & Coenye, T. (2014). Protease production by Staphylococcus epidermidis and its effect on Staphylococcus aureus biofilms. Pathogens and Disease, 70, 321–331. https://doi.org/10.1111/2049-632X.12133.

    Article  Google Scholar 

Download references

Acknowledgments

This work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniil Kabanov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabanov, D., Khabipova, N., Valeeva, L. et al. Effect of Subtilisin-like Proteinase of Bacillus pumilus 3–19 on Pseudomonas aeruginosa Biofilms. BioNanoSci. 9, 515–520 (2019). https://doi.org/10.1007/s12668-019-00617-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00617-z

Keywords

Navigation