Skip to main content
Log in

Identification of Electron Transfer in the System of Ferredoxins and Ferredoxin Reductases from Mycolicibacterium smegmatis

  • SHORT COMMUNICATIONS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Steroid-26-monooxygenases belong to the cytochrome P450 superfamily and function as part of three-component systems together with ferredoxins and ferredoxin reductases providing electron transport. The P450-dependent redox partners of the actinobacterial strain Mycolicibacterium smegmatis mc2155 were investigated. The genes encoding mycolibacterial ferredoxins (FdxD and FdxE) and ferredoxin reductases (FdrA and FprA) were overexpressed in E. coli cells. A scheme for isolation and purification of synthesized recombinant proteins using affinity chromatography was developed, resulting in electrophoretically homogeneous preparations. Spectral analysis of ferredoxin reductase showed absorption peaks characteristic of FAD-containing proteins. The reaction of cytochrome c reduction using recombinant proteins was carried out, demonstrating that FdxD, FdxE, FdrA, and FprA can act as components of electron transport from the reducing equivalents of NAD(P)H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bertani, G., Studies on Lysogenesis I. The mode of phage liberation by lysogenic Escherichia coli, J. Bacteriol., 1951, vol. 62, pp. 293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Donova, M.V., Current trends and perspectives in microbial bioconversions of steroids, in Microbial Steroids. Methods in Molecular Biology, Barreiro, C. and Barredo, J.L., Eds., New York: Humana, 2023, vol. 2704, pp. 3–21.

    Google Scholar 

  3. Fernandez-Cabezon, L., Galan, B., and Garcia, J.L., Engineering Mycobacterium smegmatis for testosterone production, Microb. Biotechnol., 2017, vol. 10, no. 1, pp. 151–161.

    Article  CAS  PubMed  Google Scholar 

  4. Fischer, F., Raimondi, D., Aliverti, A., and Zanetti, G., Mycobacterium tuberculosis FprA, a novel bacterial N-ADPH-ferredoxin reductase, Eur . J. Biochem., 2002, vol. 269, pp. 3005–3013.

    Article  CAS  PubMed  Google Scholar 

  5. Garcia, J.L., Uhia, I., and Galan, B., Catabolism and biotechnological applications of cholesterol degrading bacteria, Microb. Biotechnol., 2012, vol. 5, no. 6, pp. 679–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garcia-Fernandez, E., Frank, D.J., Galan, B., Kells, P.M., Podust, L.M., Garcia, J.L., and Ortiz de Montellano, P.R., A highly conserved mycobacterial cholesterol catabolic pathway, Environ. Microbiol., 2013, vol. 15, no. 8, pp. 2342–2359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hannemann, F., Bichet, A., Ewen, K.M., and Bernhardt, R., Cytochrome P450 systems—biological variations of electron transport chains, Biochim. Biophys. Acta, 2007, vol. 1770, no. 3, pp. 330–344.

    Article  CAS  PubMed  Google Scholar 

  8. Lu, Y., Qiao, F., Li, Y., Sang, X.-H., Li, C.-R., Jiang, J.-D., Yang, X.-Y., and You, X.-F., Recombinant expression and biochemical characterization of Mycobacterium tuberculosis 3Fe-4S ferredoxin Rv1786, Appl. Microbiol. Biotechnol., 2017, vol. 101, pp. 7201–7212.

    Article  CAS  PubMed  Google Scholar 

  9. Ortega Ugalde, S., de Koning, C.P., Wallraven, K., Bruyneel, B., Vermeulen, N.P., Grossmann, T.N., Bitter, W., Commandeur, J.-N.M., and Vos, J.C., Linking cytochrome P450 enzymes from Mycobacterium tuberculosis to their cognate ferredoxin partners, Appl. Microbiol. Biotechnol., 2018, vol. 102, no. 21, pp. 9231–9242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T., and Jacobs, W.R., Jr., Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis, Mol. Microbiol., 1990, vol. 4, no. 11, pp. 1911–1919.

    Article  CAS  PubMed  Google Scholar 

  11. Tartoff, K.D. and Hobbs, C.A., Improved media for growing plasmid and cosmid clones, Bethesda Res. Lab. Focus, 1987, vol. 9, p. 12.

    Google Scholar 

  12. Tekucheva, D.N., Nikolayeva, V.M., Karpov, M.V., Timakova, T.A., Shutov, A.A., and Donova, M.V., Bioproduction of testosterone from phytosterol by Mycolicibacterium neoaurum strains: “one-pot,” two modes, Bioresour. Bioprocess, 2022, vol. 9, p. 116.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wilburn, K.M., Fieweger, R.A., and Van der Ven, B.C., Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis, Pathog. Dis., 2018, vol. 76, no. 2, p. 21.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 21-64-00024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Epiktetov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human or animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Makeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epiktetov, D.O., Karpov, M.V. & Donova, M.V. Identification of Electron Transfer in the System of Ferredoxins and Ferredoxin Reductases from Mycolicibacterium smegmatis. Microbiology 93, 149–153 (2024). https://doi.org/10.1134/S0026261723603871

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723603871

Keywords:

Navigation