Skip to main content
Log in

Biodegradation Features of Composite Materials Based on High-Density Polyethylene and Starch

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract—

The degradation properties of high-density polyethylene composites filled with amylose and amylopectin polysaccharides were studied. At low dosages of the polysaccharides (0.5% wt/wt), no change in viscosity, molecular weight and physical and mechanical characteristics of HDPE samples were observed, while an increase in the proportion of the natural filler (starch) to 1 and 5% resulted in a decrease in mechanical properties, although the values of deformation and strength parameters satisfied the minimum necessary requirements for film packaging. After incubation in soil for one year, the sample of HDPE film with a corn starch content of 5% (wt/wt) was found to undergo the greatest changes in its properties. The study of ability of aerobic microorganisms to carry out the surface transformation of the studied film composites revealed that bacteria of the genus Bacillus efficiently colonized the polyethylene-starch composites. Among the identified microorganisms, micromycetes of the genus Penicillium and Trichoderma caused the most pronounced changes in the structure of the studied polymer composites, and the greatest effect was achieved in the case of synergistic action of different micromycetes genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Aamer, A.S., Biological degradation of plastics: a comprehensive review, Biotechnol. Adv., 2006, vol. 26, pp. 246‒265.

    Google Scholar 

  2. Agzamov, R.Z., Russkov, D.V., Min, T.T., Sirotkin, A.S., and Spiridonova, R.R., On the biological degradation of polymer compositions based on polyethylene, Bull. Kazan Technol. Univ., 2012, vol. 15, no. 18, pp. 155‒158.

    Google Scholar 

  3. Barantsevich, E.P. and Barantsevich, N.E., Application of MALDI-TOF mass spectrometry in clinical microbiology, Translyatsionnaya Meditsina, 2014, no. 6, pp. 23‒28.

  4. Bensch, K., Groenewald, J.D., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B.A., Shin, H.-D., Dugan, F.M., Schoroers, H.-J., Braun, U., and Grous, R.W., Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales), Stud. Mycol., 2010, vol. 67, pp. 1–94. https://doi.org/10.3114/sim.2010.67.01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berseneva, O.A. and Kulemina, O.A., New generation polymers, modern chemistry: successes and achievements, Proc. 2nd Int. Sci. Conf., Chita, 2016, pp. 27‒29.

  6. Bio-Damage of Hospital Buildings and Their Impact on Human Health, Shcherbo, A.P. and Antonova, V.B., Eds., S.‑Pb.: S.-Pb. Med. Acad. Postgrad. Educ., 2008, р. 232.

  7. Blumenthal, K. and Bochaton, L., Archive: Waste indicators on generation and landfilling—monitoring sustainable development. Access mode: Archive: Waste indicators on generation and landfilling—monitoring sustainable development. Statistics Explained (europa.eu) / Waste_indicators on generation and landfilling—monitoring sustainable development 2004‒2010‒2013.

  8. Dildi, A.K.F, Linear low density polyethylene —biodegradability using bacteria from marine benthic environment and photodegradability using ultraviolet light, Ph. D. Thesis, Kerala, India, 2011.

  9. Encalada, K., Aldás, M.B., Proaño, E., and Valle, V., An overview of starch-based biopolymers and their biodegradability, Revista Ciencia e Ingeniería, 2018, vol. 39, pp. 245‒258.

    Google Scholar 

  10. https://takiedela.ru/news/2020/10/14/grinpis-plastikvot-ching-2/.

  11. Kotova, I.B. Taktarova, Yu.V., Tsavkelova, E.A., and Bonch-Osmolovskaya, E.A., Microbial degradation of plastics and approaches to make it more efficient, Microbiology (Moscow), 2021, vol. 90, pp. 671‒701.

    Article  CAS  Google Scholar 

  12. Koutny, M., Sancelme, M., Dabin, C., Pichon, N., Delort, A.-M., and Lemaire, J., Acquired biodegradability of polyethylenes containing pro-oxidant additives, Polym. Degrad. Stab., 2006, vol. 91, pp. 1495–1503. https://doi.org/10.1016/j.polymdegradstab.2005.10.007

    Article  CAS  Google Scholar 

  13. Litvinov, M.A., Metody izucheniya pochvennykh mikroskopicheskikh gribov (Methods for Investigation of Soil Microscopic Fungi), Moscow: Nauka, 1969.

  14. Litvinov, M.A., Opredelitel’ mikroskopicheskikh pochven-nykh gribov (Manual for Identification of Microscopic Soil Fungi), Leningrad: Nauka, 1967.

  15. Mazitova, A.K., Aminova, G.K., Zaripov, I.I., and Vikhareva, I.N., Biodegradable polymer materials and modifying additives: present state. Part 2, Nanotekhnol v Proizvodstve. Razrabotka novykh polimernykh materialov (Nanotechnologies in Industry. Development of New Polymer Materials), 2021, vol. 13, pp. 32‒38. https://doi.org/10.15828/2075-8545-2021-13-1-32-38

  16. Nafchi, A.M. Moradpour, M., Saeidi, M., and Alias, A.K., Thermoplastic starches: properties, challenges, and prospects, Starch, 2013, vol. 65, pp. 61–72.

    Article  Google Scholar 

  17. Nagarkar, R. and Patel, J., Polyvinyl alcohol: a comprehensive study, Acta Sci. Pharm. Sci., 2019, vol. 3, no. 4, pp. 34‒44.

    Google Scholar 

  18. Nowak, B., Pajak, J., Drozd-Bratkowicz, M., and Rymarz, G., Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions, Int. Biodeter. Biodegr., 2011, vol. 65, pp. 757–767.

    Article  CAS  Google Scholar 

  19. Podkorytova, A.V., Marine plant biopolymers, Int. Sci.-Pract. Conf. “Biotechnology and Life Quality,” Moscow, 2014, pp. 498‒499.

    Google Scholar 

  20. Rajandas, H., Parimannan, S., Sathasivam, K., Ravichandran, M., and Yin, L.S., A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation, Polymer Testing, 2012, vol. 31, pp. 1094–1099.

    Article  CAS  Google Scholar 

  21. Raziyafatima, M., Microbial degradation of plastic waste: a review, J. Pharma Chem. Biol. Sci., 2016, vol. 4, pp. 231‒242.

    Google Scholar 

  22. RF Patent no. 2669865C1, Composition for obtaining biodegradable polymer material and biodegradable polymer material on it is basis, 2016.

  23. Roy, P.K., Titus, S, Surekha, P., Tulsi, E., Deshmukh, C., and Rajagopal, C., Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium, Polym. Degrad. Stab., 2008, vol. 93, pp. 1917–1922.

    Article  CAS  Google Scholar 

  24. Santo, M., Weitsman, R., and Sivan, A., The role of the copper-binding enzyme—laccase—in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber, Int. Biodeterior. Biodegr., 2013, vol. 84, pp. 204–210.

    Article  CAS  Google Scholar 

  25. Shah, A.A., Biodergadation of natural and synthetic rubbers: a review, Int. Biodeterior. Biodegr., 2013, vol. 83, pp. 145‒157. https://doi.org/10.1016/j.ibiod.2013.05.004

    Article  CAS  Google Scholar 

  26. Shah, A.A., Hasan, F., Hameed, A., and Ahmed, S., Biological degradation of plastics: a comprehensive review, Biotechnol. Adv., 2008, vol. 26, pp. 246–265.

    Article  CAS  PubMed  Google Scholar 

  27. Sudhakar, M., Doble, M., Murthy, P.S., and Venkatesan, R., Marine microbe-mediated biodegradation of low- and high-density polyethylenes, Int. Biodeterior. Biodegr., 2008, vol. 61, pp. 203–212.

    Article  CAS  Google Scholar 

  28. Suslova, T.N., Nikonorova, V.N., Sosnovskaya, L.B., Gilaeva, G.V., and Salakhov, I.I., Evaluation of the effectiveness of destruction of compositions based on polyethylene and starch, Bull. Kazan Technol. Univ., 2014, vol. 17, no. 24, pp. 120‒123.

    CAS  Google Scholar 

  29. Tasekeev, M.S. and Eremeeva, L.M., Proizvodstvo biopolimerov kak odin iz putei resheniya problem ekologii i APK (Production of Biopolymers as an Approach to Solving the Problems of Ecology and AIC), Almaty: NTs NTI, 2009, р. 7.

  30. Wong, P.K., Preparation and characterization of polymeric biocomposites using plant-based materials, MS Thesis, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Suslova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslova, T.N., Salakhov, I.I., Nikonorova, V.N. et al. Biodegradation Features of Composite Materials Based on High-Density Polyethylene and Starch. Microbiology 92, 695–703 (2023). https://doi.org/10.1134/S0026261723601653

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723601653

Keywords:

Navigation