Skip to main content

Advertisement

Log in

Biological Activity and Composition of Metabolites of Potential Agricultural Application from Streptomyces carpaticus K-11 RCAM04697 (SCPM-O-B-9993)

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Strain K-11 was isolated from the highly saline brown semi-desert soil of the Astrakhan region. Based on analysis of the 16S rRNA gene sequence, this strain was identified as Streptomyces carpaticus K-11 RCAM04697 (SCPM-O-B-9993). Whole genome sequencing of the strain was performed. Phytotoxicity, antiviral, antioxidant, antifungal, and insecticidal activities of the strain were studied. All extracts and suspensions of S. carpaticus strain RCAM04697 had plant-stimulating activity. Antiviral properties was exhibited as suppression of development and propagation of viral pathogens in laboratory conditions: Tomato mosaic virus (ToMV)—26.3%, Cucumber mosaic virus (CMV)—33.8%, Y-Potato virus (Potato Y potyvirus, PVY)—51.3%, Potato X-virus (PVX) (Potato X potyvirus, PVX)—41.3%. The highest antioxidant activity was shown by a suspension of S. carpaticus strain RCAM04697 (88.8%) and its aqueous-alcoholic (20 : 80) extract (76.0%). The strain inhibited growth of the phytopathogenic fungus Fusarium sporotrichioides to varying degrees. The insecticidal activity against Aphis fabae after 6 h of treatment was 100% in the variants with suspension treatment, water-alcohol (80 : 20, 50 : 50), methanol, and hexane extracts. The metabolites of the S. carpaticus RCAM04697 strain included flavonoids, alkaloids, glycosides, organic acids (isocitric, acetic, fumaric, lactic, pyruvic, and malic), alcohols, aldehydes, hydrocarbons, ethers, sulfur-containing compounds, and other groups of low-molecular weight organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Anisimova, O.S., Streptomyces loidensis and Streptomyces herbaricolor: biological grounds for utilization of secondary metabolites for development of new insectoacaricidal biopreparations, Extended Abstract of Cand. Sci. (Biol.) Dissertation, SPb.: All-Russian Research Institute for Plant Protection, 2008.

  2. Bataeva, Yu.V., Grigoryan, L.N., Kurashov, E.A., Krylova, Yu.V., Fedorova, E.V., Yavid, E.Ya., Khodonovich, V.V., and Yakovleva, L.V., Investigation of metabolites of Streptomyces carpaticus RCAM04697 for the creation of environmentally friendly plant protection products, Teor. Priklad. Ekol., 2021, no. 3, pp. 172−178. https://doi.org/10.25750/1995-4301-2021-3-172-178

  3. Burtseva, S.A., Poiras, N.A., Byrsa, M.N., and Poiras, L.N., Effect of presowing treatment of tomato seeds with metabolites of streptomycetes from Moldova soils, Proc. 2nd All-Russ. Sci. Pract. Conf. with Int. Particip. “Biodiversity and Rational Utilization of Natural Resources,” Makhachkala, 2014, pp. 213–216.

  4. Cho, J.Y. and Kim, M.S., Antibacterial benzaldehydes produced by seaweed-derived Streptomyces atrovirens PK288-21, Fisheries Sci., 2012, vol. 78, no. 5, pp. 1065–1073. https://doi.org/10.1007/s12562-012-0531-3

    Article  CAS  Google Scholar 

  5. Chuluun, B., Saparmyradov, A., Alimova, F.K., and Mindubaev, A.Z., Comparison of the parameters of plant toxicity, fungicidal and bactericidal activity of streptomycetes from different habitats, Butlerovsk. Soobshch., 2014, vol. 38, no. 6, pp. 147−152.

    Google Scholar 

  6. Cushnie, T., Cushnie, B., and Lamb, A.J., Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities, Int. J. Antimicrob. Agents, 2014, vol. 44, no. 5, pp. 377−386. https://doi.org/10.1016/j.ijantimicag.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  7. Domracheva, L.I., Skugoreva, S.G., Starikov, P.A., Gornostaeva, E.A., and Ashimkhina, T.Ya., Microbes-antagonists against of phytopathogenic bacteria and fungi (review), Theor. Appl. Ecol., 2022, no. 2, pp. 6−14. https://doi.org/10.25750/1995-4301-2022-2-006-014

  8. Egorova, A.M. and Tarchevskii, I.A., Priming signaling function of antibiotics produced by streptomycetes, Ekobiotekh, 2019, vol. 2, no. 4, pp. 504−509. https://doi.org/10.31163/2618-964X-2019-2-4-504-509

    Article  Google Scholar 

  9. Gauze, G.F., Preobrazhenskaya, T.P., Sveshnikova, M.A., Terekhova, L.P., and Maksimova, T.S., Opredelitel’ aktinomitsetov. Genera Streptomyces, Streptoverticilium, Chainia (Guide for Actinomycete Identification. Genera Streptomyces, Streptoverticilium, Chainia), Moscow: Nauka, 1983.

  10. Grigoryan, L.N., Bataeva, Yu.V., and Shlyakhov, V.A., Effect of the bacterial strain Streptomyces carpaticus RCAM04697 on plant stimulation, tomato phytoviruses, and insect pests under laboratory conditions, Estestv. Tekhn. Nauki, 2020, no. 6 (144), pp. 58−61.

  11. Grigoryan, L.N., Bataeva, Y.V., Andreeva, E.D., Zakar’yaeva, D.Kh., Turaeva, Z.O., and Antonova, S.V., Study of the component structure of the metabolites of bacteria Nocardiopsis umidischolae in the search for eco-friendly plant protection agents, Russ. J. Gen. Chem., 2020, vol. 90, no. 13, pp. 2531–2541. https://doi.org/10.1134/S1070363220130010

    Article  CAS  Google Scholar 

  12. Karak, P., Biological activities of flavonoids: an overview, Int. J. Pharm. Sci. Res., 2019, vol. 10, no. 4, 1567−1574. https://doi.org/10.13040/IJPSR.0975-8232.10(4).1567-74

  13. Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y.N., and Al-aizari, F.A., Synthesis and pharmacological activities of pyrazole derivatives, Molecules, 2018, vol. 23, no. 1, p. 134. https://doi.org/10.3390/molecules23010134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Korkmaz, M.O. and Erturk, D., Gurel insecticidal activity of some strains of streptomycetes isolated from the soil against larvae and adults of the Colorado potato beetle (Leptinotarsa decemlineata), Turkey: Bitki Koruma Bul., 2015, vol. 55, no. 1, pp. 73–84. https://doi.org/10.3923/jm.2017.218.228

    Article  CAS  Google Scholar 

  15. Kurashov, E.A., Fedorova, E.V., Krylova, J.V., and Mitrukova, G.G., Assessment of the potential biological activity of low molecular weight metabolites of freshwater macrophytes with QSAR, Scientifica, 2016, vol. 2016, р. 1205680.https://doi.org/10.1155/2016/1205680

  16. Manual of Methods for General Bacteriology, Gerhardt, P., Murray, R.G.E., Costilow, R.N., Nester, E.W., Wood, W.A., Krieg, N.R., and Phillips, G.B., Eds., Washington: Amer. Soc. Microbiol., 1981 [Russ. Transl. Moscow: Mir, 1984].

    Google Scholar 

  17. Manucharova, N.A., Trosheva, E.V., Kol’tsova, E.M., Demkina, E.V., Karaevskaya, E.V., Rivkina, E.M., Mardanov, A.V., and El’-Registan, G.I., Characterization of the structure of the prokaryotic complex of Antarctic permafrost by molecular genetic techniques, Microbiology (Moscow), 2016, vol. 85, no. 1, pp. 102–108. https://doi.org/10.7868/S0026365616010055

    Article  CAS  Google Scholar 

  18. Pacios-Michelena, S., Aguilar González, C.N., Alvarez-Perez, O.B., Rodriguez-Herrera, R., Chávez-González, M., Arredondo Valdés, R., Ascacio Valdés, J.A., Govea Salas, M., and Ilyina, A., Application of Streptomyces antimicrobial compounds for the control of phytopathogens, Front. Sustain. Food Syst., 2021, vol. 5, p. 696518. https://doi.org/10.3389/fsufs.2021.696518

    Article  Google Scholar 

  19. Polyak, Yu.M. and Sukharevich, V.I., Isolation of soil actinomycete producers of complex antibiotics, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2017, no. 13 (1). 18–24.

  20. Pylro, V.S., Dias, A.C.F., Andreote, C.C.F., Andreote, F.D., Mello, D.E., Varani, A., Figueiredo, D.E., Ribeiro, I.A., Kitano, I.T., Almeida, D.E., and Bernardo, E.R., Draft genomic sequences of Streptomyces misionensis ACT66 and Streptomyces albidoflavus act77, bacteria with potential application for phytopathogen biocontrol, Microbiol. Res. Announc., 2019, vol. 8, no. 36, pp. 118–125. https://doi.org/10.1128/MRA.00949-19

    Article  Google Scholar 

  21. Remya, S., Sivaraman, G.K., Joseph, T.C., Parmar, E., Sreelakshmi, K.R., Mohan, C.O., and Ravishankar, C.N., Influence of corn starch based bio-active edible coating containing fumaric acid on the lipid quality and microbial shelf life of silver pomfret fish steaks stored at 4°C, J. Food Sci. Technol., 2022, vol. 59, no. 9, pp. 3387–3398. https://doi.org/10.1007/s13197-021-05322-y

    Article  CAS  PubMed  Google Scholar 

  22. Řezanka, T., Spížek Přikrylová, J., Prell, A., and Dembitsky, V.M., Five new derivatives of nonactic and homo-nonactic acids from Streptomyces globisporus, Tetrahedron, 2004, vol. 60, no. 22, pp. 4781–4787. https://doi.org/10.1016/J.TET.2004.04.006

    Article  Google Scholar 

  23. RF Patent no. 2156301, 2000.

  24. RF Patent no. 2226214, 2004.

  25. RF Patent no. 2243259, 2002.

  26. RF Patent no. 2695157, 2019.

  27. Ryzhkova, E.P., Danilova, I.V., Shamraixhuk, I.L., Kurakov, A.V., and Netrusov, A.I., Antifungal activity of a Propionibacterium freudenreichii strain and members of the genus Lactobacillus, Mikol. Fitopatol., 2018, vol. 52, no. 2, pp. 144–149.

    Google Scholar 

  28. Shirokikh, I.G., Bakulina, A.V., Nazarova, Ya.I., Shiro-ki-kh, A.A., and Kozlova, L.M., The influence of Streptomyces castelarensis A4 on the incidence and yield of grain crops of field crop rotation, Mikol. Fitopatol., 2020. vol. 54, no. 1. pp. 59–66. https://doi.org/10.31857/S0026364820010080

    Article  Google Scholar 

  29. Tolkachova, N.V., Komarovskaya-Porokhnyavets, E.Z., and Novikov, V.P., Biological activity of steroid glycosides from bulbs of Allium cyrillii ten. (Alliaceae), Pharmacy and Pharmacology, 2014, vol. 6, no. 7, pp. 29–32. https://doi.org/10.19163/2307-9266-2014-2-6(7)-29-32

    Article  Google Scholar 

  30. Zinn, M.-K. and Bockmühl, D., Did granny know best? Evaluating the antibacterial, antifungal and antiviral efficacy of acetic acid for home care procedures. BMC Microbiol., 2020, no. 20 (265), pp. 1–9.

Download references

Funding

The study was carried out within the framework of the project Development of the Environmentally Secure Plant Protection Agent Based on Soil Actinobacteria for the Restoration of Agricultural Ecosystems in the Development Program of the Tatishchev Astrakhan State University for 2021‒2030 (Prioritet 2030) and within the framework of the research on the topic no. 0154-2019-0002 INOZ RAN—SPB FITs RAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Bataeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bataeva, Y.V., Grigoryan, L.N., Bogun, A.G. et al. Biological Activity and Composition of Metabolites of Potential Agricultural Application from Streptomyces carpaticus K-11 RCAM04697 (SCPM-O-B-9993). Microbiology 92, 459–467 (2023). https://doi.org/10.1134/S0026261723600155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723600155

Keywords:

Navigation