Skip to main content
Log in

Metabolic and genomic analysis deciphering biocontrol potential of endophytic Streptomyces albus RC2 against crop pathogenic fungi

  • Bacterial, Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Plant diseases caused by phytopathogenic fungi are one of the leading factors affecting crop loss. In the present study, sixty-one Streptomyces strains were screened for their antifungal activity against relevant wide range fungal pathogens prominent in Vietnam, namely Lasiodiplodia theobromae, Fusarium fujikuroi, and Scopulariopsis gossypii. Endophytic strain RC2 was the most effective strain in the mycelial inhibition of the tested fungi. Based on phenotypic characteristics, 16S rDNA gene analysis, and genomic analysis, strain RC2 belonged to Streptomyces albus. An ethyl acetate extract of S. albus RC2 led to the strong growth inhibition of S. gossypii Co1 and F. fujikuroi L3, but not L. theobromae N13. The crude extract also suppressed the spore germination of S. gossypii Co1 and F. fujikuroi L3 to 92.4 ± 3.2% and 87.4% ± 1.9%, respectively. In addition, the RC2 extract displayed potent and broad-spectrum antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, and the phytopathogenic bacteria Ralstonia solanacearum and Xanthomonas oryzae. The genome of strain RC2 was sequenced and revealed the presence of 15 biosynthetic gene clusters (BGCs) with similarities ≥ 45% to reference BGCs available in the antiSMASH database. The UPLC-HRMS analysis led to the identification of 8 other secondary metabolites, which have not been reported in S. albus. The present study indicated that RC2 could be a potent biocontrol agent against phytopathogenic fungi. Further attention should be paid to antifungal metabolites without functional annotation, development of product prototypes, and greenhouse experiments to demonstrate effective control of the plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data analyzed during this study are included in this published article. Data will be shared upon reasonable request.

References

  1. Peng Y, Li SJ, Yan J, Tang Y, Cheng JP, Gao AJ, Yao X, Ruan JJ, Xu BL (2021) Research progress on phytopathogenic fungi and their role as biocontrol agents. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.670135.

  2. Tadasanahaller PS, Bashyal BM, Yadav J, Krishnan Subbaiyan G, Ellur RK, Aggarwal R (2023) Identification and characterization of Fusarium fujikuroi pathotypes responsible for an emerging bakanae disease of rice in India. Plants 12(6):1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Phetphan C, Supakitthanakorn S, Phuakjaiphaeo C, Pipattanapuckdee A, Kunasakdakul K, Ruangwong O-U Biological and molecular characterization of Lasiodiplodia theobromae causing dieback disease of strawberry in Thailand. J Phytopathol 171(5):1–6. https://doi.org/10.1111/jph.13181.

  4. Li X-L, Ojaghian MR, Zhang J-Z, Zhu S-J (2017) A new species of Scopulariopsis and its synergistic effect on pathogenicity of Verticillium dahliae on cotton plants. Microbiol Res 201:12–20. https://doi.org/10.1016/j.micres.2017.04.006

    Article  CAS  PubMed  Google Scholar 

  5. Gebily DAS, Ghanem GAM, Ragab MM, Ali AM, Soliman NE-DK, Abd El-Moity TH (2021) Characterization and potential antifungal activities of three Streptomyces spp. as biocontrol agents against Sclerotinia sclerotiorum (Lib.) de Bary infecting green bean. Egypt J Biol Pest Control 31(1):33. https://doi.org/10.1186/s41938-021-00373-x

    Article  Google Scholar 

  6. Wang W, Kim S, Vu THN, Quach NT, Oh E, Park KH, Park C, Cho Y, Jang H, Roh E, Lee J, Kang E, Han S, Phi QT, Kang H (2023) Bioactive piperazic acid-bearing cyclodepsipeptides, lydiamycins E-H, from an endophytic Streptomyces sp. associated with Cinnamomum cassia. J Nat Prod 86(4):751–758. https://doi.org/10.1021/acs.jnatprod.2c00902

    Article  CAS  PubMed  Google Scholar 

  7. Lee N, Hwang S, Kim J, Cho S, Palsson B, Cho B-K (2020) Mini review: genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput Struct Biotechnol J 18:1548–1556. https://doi.org/10.1016/j.csbj.2020.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qi D, Zou L, Zhou D, Chen Y, Gao Z, Feng R, Zhang M, Li K, Xie J, Wang W (2019) Taxonomy and broad-spectrum antifungal activity of Streptomyces sp. SCA3–4 isolated from rhizosphere soil of Opuntia stricta. Front Microbiol 10:1390. https://doi.org/10.3389/fmicb.2019.01390

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jing T, Zhou D, Zhang M, Yun T, Qi D, Wei Y, Chen Y, Zang X, Wang W, Xie J (2020) Newly isolated Streptomyces sp. JBS5–6 as a potential biocontrol agent to control banana Fusarium wilt: genome sequencing and secondary metabolite cluster profiles. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.602591.

  10. Quach NT, Vu THN, Nguyen TTA, Ha H, Ho P-H, Chu-Ky S, Nguyen L-H, Van Nguyen H, Thanh TTT, Nguyen NA, Chu HH, Phi Q-T (2022) Structural and genetic insights into a poly-γ-glutamic acid with in vitro antioxidant activity of Bacillus velezensis VCN56. World J Microbiol Biotechnol 38(10):173. https://doi.org/10.1007/s11274-022-03364-8

    Article  CAS  PubMed  Google Scholar 

  11. Quach NT, Nguyen Vu TH, Bui TL, Pham AT, An Nguyen TT, Le Xuan TT, Thuy Ta TT, Dudhagara P, Phi QT (2022) Genome-guided investigation provides new insights into secondary metabolites of Streptomyces parvulus SX6 from Aegiceras corniculatum. Pol J Microbiol 71(3):381–394. https://doi.org/10.33073/pjm-2022-034

    Article  PubMed  PubMed Central  Google Scholar 

  12. Khoshakhlagh A, Aghaei SS, Abroun S, Soleimani M, Zolfaghari MR (2022) Investigation of diverse biosynthetic secondary metabolites gene clusters using genome mining of indigenous Streptomyces strains isolated from saline soils in Iran. Iran J Microbiol 14(6):881–890. https://doi.org/10.18502/ijm.v14i6.11263

    Article  PubMed  PubMed Central  Google Scholar 

  13. Quach NT, Vu THN, Bui TL, Le TTX, Nguyen TTA, Ngo CC, Phi Q-T (2022) Genomic and physiological traits provide insights into ecological niche adaptations of mangrove endophytic Streptomyces parvulus VCCM 22513. Ann Microbiol 72(1):27. https://doi.org/10.1186/s13213-022-01684-6

    Article  CAS  Google Scholar 

  14. Santos-Beneit F, Ceniceros A, Nikolaou A, Salas JA, Gutierrez-Merino J (2022) Identification of antimicrobial compounds in two Streptomyces sp. strains isolated from beehives. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.742168.

  15. Quach NT, Nguyen QH, Vu THN, Le TTH, Ta TTT, Nguyen TD, Van Doan T, Van Nguyen T, Dang TT, Nguyen XC, Chu HH, Phi QT (2021) Plant-derived bioactive compounds produced by Streptomyces variabilis LCP18 associated with Litsea cubeba (Lour.) Pers as potential target to combat human pathogenic bacteria and human cancer cell lines. Braz J Microbiol 52(3):1215–1224. https://doi.org/10.1007/s42770-021-00510-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol 16(3):313–340. https://doi.org/10.1099/00207713-16-3-313

    Article  Google Scholar 

  17. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quach NT, Vu THN, Nguyen NA, Nguyen VT, Bui TL, Ky SC, Le TL, Hoang H, Ngo CC, Le TTM, Nguyen TN, Chu HH, Phi QT (2021) Phenotypic features and analysis of genes supporting probiotic action unravel underlying perspectives of Bacillus velezensis VTX9 as a potential feed additive for swine. Ann Microbiol 71(1):36. https://doi.org/10.1186/s13213-021-01646-4

    Article  CAS  Google Scholar 

  19. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, Stevens R, Vonstein V, Wattam AR, Xia F (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5(1):8365. https://doi.org/10.1038/srep08365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, MedemaMarnix H, Weber T (2021) antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49(W1):W29–W35. https://doi.org/10.1093/nar/gkab335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saeed EE, Sham A, Salmin Z, Abdelmowla Y, Iratni R, El-Tarabily K, AbuQamar S (2017) Streptomyces globosus UAE1, a potential effective biocontrol agent for black scorch disease in Date Palm plantations. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01455.

  23. Devi S, Sharma M, Manhas RK (2022) Investigating the plant growth promoting and biocontrol potentiality of endophytic Streptomyces SP. SP5 against early blight in Solanum lycopersicum seedlings. BMC Microbiol 22(1):285. https://doi.org/10.1186/s12866-022-02695-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gopalakrishnan S, Sharma R, Srinivas V, Naresh N, Mishra SP, Ankati S, Pratyusha S, Govindaraj M, Gonzalez SV, Nervik S, Simic N (2020) Identification and characterization of a Streptomyces albus strain and its secondary metabolite organophosphate against charcoal rot of sorghum. Plants 9(12). https://doi.org/10.3390/plants9121727.

  25. Bunyapaiboonsri T, Lapanun S, Supothina S, Rachtawee P, Chunhametha S, Suriyachadkun C, Boonruangprapa T, Auncharoen P, Chutrakul C, Vichai V (2016) Polycyclic tetrahydroxanthones from Streptomyces chrestomyceticus BCC 24770. Tetrahedron 72(5):775–778. https://doi.org/10.1016/j.tet.2015.12.045

    Article  CAS  Google Scholar 

  26. Winter DK, Sloman DL, Porco JA Jr (2013) Polycyclic xanthone natural products: structure, biological activity and chemical synthesis. Nat Prod Rep 30(3):382–391. https://doi.org/10.1039/c3np20122h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. She W, Ye W, Cheng A, Liu X, Tang J, Lan Y, Chen F, Qian P-Y (2021) Discovery, bioactivity evaluation, biosynthetic gene cluster identification, and heterologous expression of novel albofungin derivatives. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.635268.

  28. Grenade NL, Chiriac DS, Pasternak ARO, Babulic JL, Rowland BE, Howe GW, Ross AC (2023) Discovery of a tambjamine gene cluster in Streptomyces suggests convergent evolution in bipyrrole natural product biosynthesis. ACS Chem Biol 18(2):223–229. https://doi.org/10.1021/acschembio.2c00685

    Article  CAS  PubMed  Google Scholar 

  29. Alspaugh JA (2016) Discovery of ibomycin, a potent antifungal weapon. Cell Chem Biol 23(11):1321–1322. https://doi.org/10.1016/j.chembiol.2016.11.001

    Article  CAS  PubMed  Google Scholar 

  30. Liu Z, Zhao Y, Huang C, Luo Y (2021) Recent advances in silent gene cluster activation in Streptomyces. Front Bioeng Biotechnol 9. https://doi.org/10.3389/fbioe.2021.632230.

  31. Olano C, García I, González A, Rodriguez M, Rozas D, Rubio J, Sánchez-Hidalgo M, Braña AF, Méndez C, Salas JA (2014) Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb Biotechnol 7(3):242–256. https://doi.org/10.1111/1751-7915.12116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the VAST-Culture Collection of Microorganisms, Institute of Biotechnology, Vietnam Academy of Science and Technology (www.vccm.vast.vn).

Funding

This research was funded by the Vietnam Academy of Science and Technology (Grant No. VAST02.03/22–23) and the Postdoctoral Scholarship Programme of Vingroup Innovation Foundation (VINIF), code VINIF.2022.STS.32.

Author information

Authors and Affiliations

Authors

Contributions

NTQ and THNV designed this study; TTAN, PCL, GDH, TDN, TTLN, and THTP performed experiments; NTQ, HHC, and QTP wrote the paper. All authors approved this final manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Quyet-Tien Phi.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Jerri Zilli

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quach, N.T., Vu, T.H.N., Nguyen, T.T.A. et al. Metabolic and genomic analysis deciphering biocontrol potential of endophytic Streptomyces albus RC2 against crop pathogenic fungi. Braz J Microbiol 54, 2617–2626 (2023). https://doi.org/10.1007/s42770-023-01134-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01134-8

Keywords

Navigation