Skip to main content
Log in

Diversity of Plant Growth-Promoting Endophytic Bacteria, Genome Analysis of Strain Sx8-8 and Its Rice Germination Promoting Activity

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Twenty-eight endophytic bacteria isolated from stems and leaves of healthy plants in Kanchanaburi Province, Thailand, were characterized and evaluated for their plant growth-promoting activity. Based on their phenotypic characteristics and 16S rRNA gene sequence similarity, the isolates were identified as Pantoea (6 isolates), Priestia (4 isolates), Pseudomonas (3 isolates), Enterobacter (2 isolates), Acinetobacter (2 isolates), Novosphingobium (2 isolates), Curtobacterium (2 isolates), as well as Bacillus, Peribacillus, Sphingobium, Staphylococcus, Brevibacillus, Aneurinibacillus, and Pseudarthrobacter (1 isolate each). Seven isolates produced indole-3-acetic acid (IAA) in nitrogen-free broth supplemented with 0.01% L-tryptophan, eleven isolates fixed nitrogen, and twenty-three isolates solubilized phosphate and zinc. Sphingobium sp. Sx8-8 produced the highest IAA at 67.29 µg mL–1, followed by Novosphingobium sp. SI8-3 and Pantoea sp. S5-1 at 33.06 and 29.4 µg mL–1, respectively. The maximum IAA produced by the Sphingobium sp. Sx8-8 increased to 232.1 µg mL–1 at optimized conditions. In in vitro rice germination, the Sphingobium sp. Sx8-8 and Pantoea sp. S5-1 increased root length, number of lateral roots, and shoot length more than uninoculated control and synthetic IAA as a standard. The genome size of Sphingobium sp. Sx8-8 was 4.67 Mb (83 contigs), N50 size and average G + C content were 150 389 bp and 64.2 mol %, respectively. This study indicated that endophytic bacteria could potentially promote plant growth and be utilized as bioinoculant or biofertilizers in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Apine, O.A. and Jadhav, J.P., Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM, J. Appl. Microbiol., 2011, vol. 110, pp. 1235−1244.

    Article  CAS  PubMed  Google Scholar 

  2. Alexander, M., Introduction to Soil Microbiology, New York: Wiley, 1997.

    Google Scholar 

  3. Auch, A.F., von Jan, M., Klenk, H.-P., and Göker, M., Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison, Stand. Genom. Sci., 2010, vol. 2, pp. 117−134.

    Article  Google Scholar 

  4. Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T, Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., Meyer, F., Olsen, G.J., Olson, R., Osterman, A.L., Overbeek, R.A., et al., The RAST server: rapid annotations using subsystems technology, BMC Genomics., 2008, vol. 9, p. 75.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bharucha, U. and Patel, K., Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra), Agric. Res., 2013, vol. 2, pp. 215−221.

    Article  CAS  Google Scholar 

  6. Bhutani, N., Maheshwari, R., Negi, M., and Suneja, P., Optimization of IAA production by endophytic Bacillus spp. from Vigna radiata for their potential use as plant growth promoters, Isr. J. Plant. Sci., 2018, vol. 65, pp. 83−96.

    Article  Google Scholar 

  7. Chesson, P.L. and Warner, R.R., Environmental variability promotes coexistence in lottery competitive-systems, Am. Nat., 1981, vol. 117, pp. 923−943.

    Article  Google Scholar 

  8. Duca, D., Lorv, J., Patten, L.C., Rose, D., and Glick, R.B., Indole-3-acetic acid in plant-microbe interactions, A. van Leeuwenhoek., 2014, vol. 106, pp. 85−125.

    Article  CAS  Google Scholar 

  9. Dastager, S.G., Deepa, C.K., Puneet, S.C., Nautiyal, C.S., and Pandey, A., Isolation and characterization of plant growth-promoting strain Pantoea NII-186. from western ghat forest soil, India, Lett. Appl. Microbiol., 2009, vol. 49, pp. 20−25.

    Article  CAS  PubMed  Google Scholar 

  10. Felsenstein, J., Evolutionary trees from DNA sequences: a maximum likelihood approach, J. Mol. Evol. 1981, vol. 17, pp. 68−76.

    Article  Google Scholar 

  11. Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 1985, vol. 39, pp. 783−791.

    Article  PubMed  Google Scholar 

  12. Flood, J.J. and Copley, D.S., Genome-wide analysis of transcriptional changes and genes that contribute to fitness during degradation of the anthropogenic pollutant pentachlorophenol by Sphingobium chlorophenolicum, mSystems, 2018, vol. 3, pp. 1−16.

    Article  Google Scholar 

  13. Gevers, D., Huys, G., and Swings, J., Applicability of rep-PCR fingerprinting for identification of Lactobacillus species, FEMS Microbiol. Lett.,2001, vol. 205, pp. 31−36.

    Article  CAS  PubMed  Google Scholar 

  14. Giassi, V., Kiritani, C., and Kupper, K.C., Bacteria as growth-promoting agents for citrus rootstocks, Microbiol. Res., 2016, vol. 190, pp. 46−54.

    Article  PubMed  Google Scholar 

  15. Gomez-Gil, B., Soto-Rodriguez, S., Garcia-Gasca, A., Roque, A., Vazquez-Juarez, R., and Thompson, F.L., Molecular identification of Vibrio harveyi related isolates associated with diseased aquatic organisms, Microbiology, 2004, vol. 150, pp. 1769−1777.

    Article  CAS  PubMed  Google Scholar 

  16. Hansen, H. and Grossmann, K., Auxin-induced ethylene trigger abscisic acid biosynthesis and growth inhibition, Plant Physiol., 2000, vol. 124, pp. 1437−1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hutchinson, G.E., The paradox of the plankton, Am. Nat., 1961, vol. 95, pp. 137−145.

    Article  Google Scholar 

  18. Kalaiselvi, T. and Priya, D., Evaluating the effect of Sphingobium yanoikuyae MH394206 and mixed consortia on growth of rice CO 51 in moisture deficit condition, J. Pharmacogn. Phytochem, 2020, vol. 9, pp. 2016−2021.

    Google Scholar 

  19. Khamwan, S., Boonlue, S., Riddech, N., Jogloy, S., and Mongkolthanaruk, W., Characterization of endophytic bacteria and their response to plant growth promotion in Helianthus tuberosus L., Biocatal. Agric. Biotechnol., 2018, vol. 13, pp. 153−159.

    Article  Google Scholar 

  20. Khanghahi, Y.M., Ricciuti, P., Allegretta, I., Terzano, R., and Crecchio, C., Solubilization of insoluble zinc compounds by zinc solubilizing bacteria (ZSB) and optimization of their growth conditions, ESPR, 2018, vol. 25, pp. 25862−25868.

    CAS  PubMed  Google Scholar 

  21. Kirchhorf, G., Reis, V.M., Baldani, J.I., Eckert, B., Döbereiner, J., and Hartmann, A., Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants, Plant Soil, 1997, vol. 194, pp. 45−55.

    Article  Google Scholar 

  22. Koichiro, T., Glen, S., and Sudhir, K., MEGA11: Molecular Evolutionary Genetics Analysis Version, Mol. Biol. Evol., 2021, vol. 38, pp. 3022−3027.

    Article  Google Scholar 

  23. Konstantinidis, K.T. and Tiedje, J.M, Towards a genome-based taxonomy for prokaryotes, J. Bacteriol., 2005, vol. 187, no. 18, pp. 6258−6264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Konstantinidis, K.T. and Tiedje, J.M, Genomic insights that advance the species definition for prokaryotes, Proc. Natl. Acad. Sci. U S A., 2005, vol. 102, no. 7, pp. 2567−2572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kukavica, B., Motrović, A., Mojović, M., and Jovanović, S.V., Effect of indole-3-acetic acid on pea root growth, peroxidase profiles and hydroxyl radical formation, Arch. Biol. Sci., 2007, vol. 59, pp. 319−326.

    Article  Google Scholar 

  26. Kumari, S., Prabha, C., Singh, A., Kumari, S., and Kiran, S., Optimization of indole-3acetic-acid production by diazotrophic B. subtilis DR2 (KP455653), isolated from rhizosphere of Eagrostis cynosuroides, Int. J. Pharm. Med., 2018, vol. 7, pp. 20−27.

    CAS  Google Scholar 

  27. Luziatelli, F., Gatti, L., Ficca, A.G., Medori, G., Silvestri, C., Melini, F., Muleo, R., and Ruzzi, M., Metabolites secreted by a plant-growth-promoting Pantoea agglomerans strain improved rooting of Pyrus communis L. cv. Dar Gazi cuttings, Front. Microbiol., 2020, vol. 11, pp. 1−11.

    Article  Google Scholar 

  28. Maker, O., Kuźniar, A., Patsula, O., Kavulych, Y., Kozlovskyy, V., Wolińska, A., Skórzyńska-Polit, E., Vatamaniuk, O., Terek, O., and Romanyuk, N., Bacterial endophytes of spring wheat grains and the potential to acquire Fe, Cu, and Zn under their low soil bioavailability, Biology, 2021, vol. 10, pp. 1−24.

    Google Scholar 

  29. Meena, V.S., Maurya, B.R., Verma, J.P., and Meena, R.S., Potassium Solubilizing Microorganisms for Sustainable Agriculture, India, Springer, 2016, pp. 10−25.

    Book  Google Scholar 

  30. Normanly, J., Slovin, J.P., and Cohen, J.D., Rethinking auxin biosynthesis and metabolism, Plant Physiol., 1995, vol. 107, pp. 323−329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oliveira, C.A., Alves, V.M.C, Marriel, I.E., Gomes, E.A., Scotti, M.R, Careiro, N.P., Guimarăes, C.T., Schaffert, R.E., and Să, N.M.H., Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome, Soil Biol. Biochem., 2009, vol. 41, pp. 1782−1787.

    Article  CAS  Google Scholar 

  32. Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis J.J., Disz, T., Edwards, R.A., Gerdes, S., Par-rello, B., Shukla, M., Vonstein, V., Wattam, A.R., Xia, F., and Stevens, R., The seed and the rapid annotation of microbial genomes using subsystems technology (RAST), Nucleic Acids Res., 2014, vol. 42, pp. D206−D214.

    Article  CAS  PubMed  Google Scholar 

  33. Patil, N.B., Gajbhiye, M., Ahiwale, S.S., Gunjai, A.B., and Kapadnis, B.P., Optimization of indole 3 acetic acid (IAA) production by Acetobacter diazotrophicus L1 isolated from sugarcane, Int. J. Environ. Sci., 2011, vol. 2, pp. 295−302.

    CAS  Google Scholar 

  34. Ramanuj, B.K. and Shelat, N.H., Plant growth promoting potential of bacterial endophytes from medicinal plants. Adv. Res., 2018, vol. 13, pp. 1−15.

    Article  Google Scholar 

  35. Richter, M. and Rossello-Mora, R., Shifting the genomic gold standard for the prokaryotic species definition, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 45, pp. 19126−19131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rodrigues, A.A. and Forzani, M.V., Isolation and selection of plant growth-promoting bacteria associated with sugarcane, Pesqui. Agropecu. Trop., 2016, vol. 26, pp. 149−158.

    Article  Google Scholar 

  37. Rodrigues, A.A., Araŭjo, F.V.M., Soares, S.R., Oliveira de F.R.B., Ribeiro, D.A.I., Sibov, T.S., and Vieira, G.J.D., Isolation and prospection of diazotrophic rhizobacteria associated with sugarcane under organic management, An. Acad. Bras. Cienc., 2018, vol. 90, pp. 3813−3829.

    Article  CAS  PubMed  Google Scholar 

  38. Rosenblueth, M. and Martínez-Romero, E., Bacterial endophytes and their interactions with hosts, MPMI, 2006, vol. 19, pp. 827−837.

    Article  CAS  PubMed  Google Scholar 

  39. Saravanan, V.S., Madhaiyan, M., and Thangaraju, M., Solubilization of zinc compounds by the diazothrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus, Chemosphere, 2007, vol. 66, pp. 1794−1798.

    Article  CAS  PubMed  Google Scholar 

  40. Shaik, I., Janakiram, P., Sujatha, L., and Chandra, S., Isolation and identification of IAA producing endosymbiotic bacteria from Gracilaria corticata (J. Agardh), Int. J. Bioassays, 2016, vol. 5, pp. 5179−5184.

    Article  CAS  Google Scholar 

  41. Sierra, G., A simple method for the detection of lipolytic activity of micro-organisms and some observation on the influence of the contact between cells and fatty substance, A. van Leeuwenhoek, 1957, vol. 23, p. 15.

    Article  CAS  Google Scholar 

  42. Song, C., Wang, W., Gan, Y., Wang, L., Chang, X., Wang, Y., and Yang, W., Growth promotion ability of phosphate-solubilizing bacteria from the soybean rhizosphere under maize soybean intercropping systems, J. Sci. Food Agric., 2022, vol. 102, pp. 1430−1442.

    Article  CAS  PubMed  Google Scholar 

  43. Spaepen, S., Vanderleyden, J., and Remans, R., Indole-3-acetic acid in microbial and microorganism-plant signaling, FEMS Microbiol. Rev., 2007, vol. 31, pp. 425−448.

    Article  CAS  PubMed  Google Scholar 

  44. Stackebrand, E. and Ebers, J., Taxonomic parameters revisited: tarnished gold standards, Microbiol. Today., 2006, vol. 33, pp. 152−155.

    Google Scholar 

  45. Svehla, G., Vogel’s Textbook of Macro and Semimicro Qualitative Inorganic Analysis, London: Longman, 1979.

    Google Scholar 

  46. Tanasupawat, S., Okada, S., and Komagata, K., Lactic acid bacteria found in fermented fish in Thailand, J. Gen. Appl. Microbiol., 1998, vol. 44, pp. 193−200.

    Article  CAS  PubMed  Google Scholar 

  47. Tolieng, V., Booncharoen, A., Nuhwa, R., Thongchul, N., and Tanasupawat, S., Molecular identification, L-lactic acid production, and antibacterial activity of Bacillus strains isolated from soils, J. Appl. Pharm. Sci., 2018, vol. 8, pp. 98−105.

    Article  CAS  Google Scholar 

  48. Varghese, N.J., Mukherjee, S., Ivanova, N., Konstantinidis, K.T., Mavrommatis, K., Kyrpides, N.C., and Pati, A., Microbial species delineation using whole genome sequences, Nucleic Acids Res., 2015, vol. 43, pp. 6761−6771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Versalovic, J., Schneider, M., de Bruijn, F.J., and Lupski, J.R., Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction, Methods Mol. Cell BioI., 1994, vol. 5, pp. 25−40.

    CAS  Google Scholar 

  50. Wei, Y.D., Zheng, H., and Hall, J.C., Role of auxinic herbicide-induced ethylene on hypocotyl elongation and root/hypocotyl radial expansion, Pest Manag. Sci., 2000, vol. 56, pp. 377−387.

    Article  CAS  Google Scholar 

  51. Welch, M.R. and Graham, D.R., Breeding for micronutrients in staple food crops from a human nutrition perspective, J. Exp. Bot., 2004, vol. 55, pp. 353−364.

    Article  CAS  PubMed  Google Scholar 

  52. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J., Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, no. 5, p. 1613.

  53. Yu, J., Yu., H., Fan, G.Q., Wang, G.H., and Liu, X.B., Isolation and characterization of indole acetic acid producing root endophytic bacteria and their potential for promoting crop growth, J. Agric. Sci. Technol., 2016, vol. 18, pp. 1381−1391.

    Google Scholar 

  54. Zhang, T., Hu, F., and Ma, L., Phosphate-solubilizing bacteria from safflower rhizosphere and their effect on seedling growth, Open Life Sci., 2019, vol. 14, pp. 246−254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University. We thank the Program in Biotechnology, Faculty of Science, Chulalongkorn University and Faculty of Science and Technology, Suan Sunandha Rajabhat University for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tanasupawat.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitlaothaworn, K., Budsabun, T., Booncharoen, A. et al. Diversity of Plant Growth-Promoting Endophytic Bacteria, Genome Analysis of Strain Sx8-8 and Its Rice Germination Promoting Activity. Microbiology 92, 269–283 (2023). https://doi.org/10.1134/S002626172260183X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626172260183X

Keywords:

Navigation