Skip to main content
Log in

Some Aspects of Resistance Development against Nisin and Human Neutrophil Peptide-1 in Enterococcus faecalis

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Augmented resistance against antimicrobial peptides in pathogenic bacteria has become a serious concern leading to increased bacterial virulence, which limits the applications of these peptides as biopreservatives. Nisin and Human Neutrophil Peptide-1 (HNP-1) are the peptides with biopreservative/clinical and physiological relevance, respectively. In the present study, certain aspects of resistance development against these peptides were investigated in Enterococcus faecalis. Three strains of E. faecalis with different levels of resistance against nisin were selected. Also, wild-type bacteria were challenged with low and high doses of HNP-1. Using in silico analysis, we identified a two-component cationic antimicrobial peptide (CAMP) sensing system in E. faecalis. Gene expression analysis revealed this system to be activated in nisin-resistant variants with increased net positive charge on bacterial cell surface. Cytochrome c assay and thin layer chromatography of the lipids derived from these bacterial strains corroborate increased cell surface positive charge upon resistance acquisition. The identified sensing system was not found to be activated in HNP-1-challenged cells, although an increased positive charge was found on the surface of these cells, indicating the possibility of more than one CAMP sensing system in E. faecalis. Both cell surface hydrophobicity and biofilm formation were increased in nisin-resistant strains, although biofilm formation was found to remain unaffected in HNP-1 challenged cells, which might be related to their unaltered expression levels of dltA gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bader, M.W., Sanowar, S., Daley, M.E., Schneider, A.R., Cho, U., Xu, W., Klevit, R.E., Moual, H.L., and Miller, S.I., Recognition of antimicrobial peptides by a bacterial sensor kinase, Cell, 2005, vol. 122, pp. 461–472.

    Article  CAS  PubMed  Google Scholar 

  2. Baldassarri, L., Cecchini, R., Bertuccini, L., Ammen-dolia, M.G., Iosi, F., Arciola, C.R., Montanaro, L., Di-Rosa, R., Gherardi, G., Dicuonzo, G., and Orefici, G., Enterococcus spp. produces slime and survives in rat peritoneal macrophages, Med. Microbiol. Immun., 2001, vol. 190, pp. 113–120.

    Article  CAS  Google Scholar 

  3. Bligh, E.G. and Dyer, W.J., A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911–917.

    Article  CAS  PubMed  Google Scholar 

  4. Brodsky, I.E. and Gunn, J.S., A bacterial sensory system that activates resistance to innate immune defenses: potential targets for antimicrobial therapeutics, Mol. Interv., 2005, vol. 5, pp. 335–337.

    Article  CAS  PubMed  Google Scholar 

  5. Cabo, M.L., Murado, M.A., González, M.P., and Pastoriza, L., A method for bacteriocin quantification, J. Appl. M-icrobiol., 1999, vol. 87, pp. 907–914.

    CAS  Google Scholar 

  6. Dabirian, S., Taslimi, Y., Zahedifard, F., Gholami, E., Doustdari, F., Motamedirad, M., Khatami, S., Azadmanesh, K., Nylen, S., and Rafati, S., Human neutrophil peptide-1 (HNP-1): a new anti-leishmanial drug candidate, PLoS Negl. Trop. Dis., 2013, vol. 7, p. e2491.

    Article  PubMed  PubMed Central  Google Scholar 

  7. De la Fuente-Núñez, C., Reffuveille, F., Fernández, L., and Hancock, R.E., Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies, Curr. Opin. Microbiol., 2013, vol. 16, pp. 580–589.

    Article  PubMed  Google Scholar 

  8. Donlan, R.M., Biofilms and device-associated infections, Emerg. Infect. Dis., 2001, vol. 7, pp. 277–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Drenkard, E., Antimicrobial resistance of Pseudomonas aeruginosa biofilms, Microbes Infect., 2003, vol. 5, pp. 1213–1219.

    Article  CAS  PubMed  Google Scholar 

  10. Fabretti, F., Theilacker, C., Baldassarri, L., Kaczynski, Z., Kropec, A., Holst, O., and Huebner, J., Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides, Infect. Immun., 2006, vol. 74, pp. 4164–4171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gera, J.F. and Lichtenstein, A., Human neutrophil peptide defensins induce single strand DNA breaks in target cells, Cell Immunol., 1991, vol. 138, pp. 108–120.

    Article  CAS  PubMed  Google Scholar 

  12. Giaouris, E., Chapot-Chartier, M.P., and Briandet, R., Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties, Int. J. Food Microbiol., 2009, vol. 131, pp. 2–9.

    Article  CAS  PubMed  Google Scholar 

  13. Gillis, R.J., White, K.G., Choi, K.H., Wagner, V.E., S-chweizer, H.P., and Iglewski, B.H., Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms, Antimicrob. Agents Chemother., 2005, vol. 49, pp. 3858–3867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gilmore, M.S., Clewell, D.B., Ike, Y., and Shankar, N., Enterococci: from commensals to leading causes of drug resistant infection [internet]. Boston: Massachusetts Eye and Ear Infirmary. 2014. https://www.ncbi.nlm.nih.gov/ books/NBK190424/.

  15. Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O., Antibiotic resistance of bacterial biofilms, Int. J. Antimicrob Agents, 2010, vol. 35, pp. 322–332.

    Article  PubMed  Google Scholar 

  16. Jacquet, T., Cailliez-Grimal, C., Borges, F., Gaiani, C., Francius, G., Duval, J.F., Waldvogel, Y., and Revol-Junelles, A.M., Surface properties of bacteria sensitive and resistant to the class IIa carnobacteriocin Cbn BM1, J. A-ppl. Microbiol., 2012, vol. 112, pp. 372–382.

    Article  CAS  Google Scholar 

  17. Jolivet-Gougeon, A. and Bonnaure-Mallet, M., Biofilms as a mechanism of bacterial resistance, Drug Discov. Today Technol., 2014, vol. 11, pp. 49–56.

    Article  PubMed  Google Scholar 

  18. Kang, J., Wiedmann, M., Boor, K.J., and Bergholz, T.M., VirR-mediated resistance of Listeria monocytogenes against food antimicrobials and cross-protection induced by exposure to organic acid salts, Appl. Environ. Microbiol., 2015, vol. 81, pp. 4553–4562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kovács, M., Halfmann, A., Fedtke, I., Heintz, M., Peschel, A., Vollmer, W., Hakenbeck, R., and Bruckner, R., A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumonia, J. Bacteriol., 2006, vol. 188, pp. 5797–5805.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Krasowska, A. and Sigler, K., How microorganisms use hydrophobicity and what does this mean for human needs?, Front. Cell. Infect. Microbiol., 2014, vol. 4, p. 112.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kristian, S.A., Datta, V., Weidenmaier, C., Kansal, R., Fedtke, I., Peschel, A., Gallo, R.L., and Nizet, V., D-alanylation of teichoic acids promotes group a streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion, J. Bacteriol., 2005, vol. 187, pp. 6719–6725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumariya, R., Sood, S.K., Rajput, Y.S., and Garsa, A.K., Gradual pediocin PA-1 resistance in Enterococcus faecalis confers cross-protection to diverse pore-forming cationic antimicrobial peptides displaying changes in cell wall and mannose PTS expression, Ann. Microbiol., 2014, vol. 65, pp. 721–732.

    Article  Google Scholar 

  23. Kumariya, R., Sood, S.K., Rajput, Y.S., Saini, N., and Garsa, A.K., Increased membrane surface positive charge and altered membrane fluidity leads to cationic antimicrobial peptide resistance in Enterococcus faecalis, Biochim. Biophys. Acta Biomembr., 2015, vol. 1848, pp. 1367–1375.

    Article  CAS  Google Scholar 

  24. Lather, P., Mohanty, A.K., Jha, P., and Garsa, A.K., Contribution of cell surface hydrophobicity in the resistance of Staphylococcus aureus against antimicrobial agents, Biochem. Res. Int., 2016.

  25. Li, M., Cha, D.J., Lai, Y., Villaruz, A.E., Sturdevant, D.E., and Otto, M., The antimicrobial peptide-sensing system aps of Staphylococcus aureus, Mol. Microbiol., 2007, vol. 66, pp. 1136–1147.

    Article  CAS  PubMed  Google Scholar 

  26. Li, M., Lai, Y., Villaruz, A.E., Cha, D.J., Sturdevant, D.E., and Otto, M., Gram-positive three-component antimicrobial peptide-sensing system, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 9469–9474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mah, T.F., Biofilm-specific antibiotic resistance, Future Microbiol., 2012, vol. 7, pp. 1061–1072.

    Article  CAS  PubMed  Google Scholar 

  28. Mandin, P., Fsihi, H., Dussurget, O., Vergassola, M., Milohanic, E., Toledo-Arana, A., Lasa, I., Johanssan, J., and Cossart, P., VirR, a response regulator critical for Listeria monocytogenes virulence, Mol. Microbiol., 2005, vol. 57, pp. 1367–1380.

    Article  CAS  PubMed  Google Scholar 

  29. Matsuo, M., Oogai, Y., Kato, F., Sugai, M., and Komatsuzawa, H., Growth-phase dependence of susceptibility to antimicrobial peptides in Staphylococcus aureus, Microbiology (SGM), 2011, vol. 157, pp. 1786–1797.

    Article  CAS  PubMed  Google Scholar 

  30. Meehl, M., Herbert, S., Götz, F., and Cheung, A., Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus, Antimicrob. Agents Chemother., 2007, vol. 51, pp. 2679–2689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mehla, J. and Sood, S.K., In vitro substantiation of dose dependent resistance and cross resistance phenomenon in E. faecalis against pore forming antimicrobial peptides using a PDA based in vitro colorimetric assay, Appl. Environ. Microbiol., 2011, vol. 77, pp. 786–793.

    Article  CAS  PubMed  Google Scholar 

  32. Mehta, S., Cuirolo, A.X., Plata, K.B., Riosa, S., Silver-man, J.A., Rubio, A., Rosato, R.R., and Rosato, A.E., VraSR two-component regulatory system contributes to mprF-mediated decreased susceptibility to daptomycin in in vivo-selected clinical strains of methicillin-resistant Staphylococcus aureus, Antimicrob. Agents Chemother., 2012, vol. 56, pp. 92–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mirani, Z.A., Fatima, A., Urooj, S., Aziz, M., Khan, M.N., and Abbas, T., Relationship of cell surface hydrophobicity with biofilm formation and growth rate: a study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, Iran. J. Basic Med. Sci., 2018, vol. 21, p. 760.

    PubMed  PubMed Central  Google Scholar 

  34. Molin, S. and Tolker-Nielsen, T., Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure, Curr. Opin. Biotechnol., 2003, vol. 14, pp. 255–261.

    Article  CAS  PubMed  Google Scholar 

  35. Mulcahy, H., Charron-Mazenod, L., and Lewenza, S., Extracellular DNA chelates cations and induces antimicrobial resistance in Escherichia coli biofilms, PLoS Pathog., 2008, vol. 4, p. e1000213.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Neuhaus, F.C. and Baddiley, J., A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria, Microbiol Mol. Biol. Rev., 2003, vol. 67, pp. 686–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pearson, W.R., An introduction to sequence similarity (“homology”) searching, Curr. Protoc. Bioinformatics, 2013, vol. 42, pp. 3–1.

    Article  Google Scholar 

  38. Peschel, A., Jack, R.W., Otto, M., Collins, L.V., Staubitz, P., Nicholson, G., Kalbacher, H., Nieuwenhuizen, W.F., Jung, G., Tarkowski, A., Kessel, K., and Strijp, J., Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine, J. Exp. Med., 2001, vol. 193, pp. 1067–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peschel, A., Otto, M., Jack, R.W., Kalbacher, H., Jung, G., and Gotz, F., Inactivation of the dlt Operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides, J. Biol. Chem., 1999, vol. 274, pp. 8405–8410.

    Article  CAS  PubMed  Google Scholar 

  40. Reifsteck, F., Wee, S., and Wilkinson, B.J., Hydrophobicity–hydrophilicity of staphylococci, J. Med. Microbiol., 1987, vol. 24, pp. 65–73.

    Article  CAS  PubMed  Google Scholar 

  41. Shin, J.M., Gwak, J.W., Kamarajan, P., Fenno, J.C., Rickard, A.H., and Kapila, Y.L., Biomedical applications of nisin, J. Appl. Microbiol., 2016, vol. 120, pp. 1449–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Soto, S.M., Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm, Virulence, 2013, vol. 4, pp. 223–229.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stark, M., Liu, L.P., and Deber, C.M., Cationic hydrophobic peptides with antimicrobial activity, Antimicrob. Agents Chemother., 2002, vol. 46, pp. 3585–3590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the contribution of the entire faculty and technical staff of Animal Biochemistry Division, ICAR-NDRI, Karnal, India.

Funding

This work was supported by Inspire programme, Department of Science and Technology (DST), India and ICAR-National Dairy Research Institute, Karnal, India. Author Dr. Ram Krishan Saini is thankful to Indian Council of Medical Research (ICMR), India for their support in terms of Ph.D fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Saini.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

AUTHORS’ CONTRIBUTION

Neha Saini contributed to the methodology, statistical analysis and manuscript writing. Ram Krishan Saini and Surya Kant Verma contributed to the data acquisition. Shiv Kumar Sood contributed in conceptualization and supervision.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, N., Saini, R.K., Verma, S.K. et al. Some Aspects of Resistance Development against Nisin and Human Neutrophil Peptide-1 in Enterococcus faecalis. Microbiology 92, 704–714 (2023). https://doi.org/10.1134/S0026261722601646

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722601646

Keywords:

Navigation