Skip to main content
Log in

Glycine Betaine Degradation via the Stickland Reaction by a Haloalkaliphilic Bacterium Halonatronomonas betaini Isolated from the Tanatar III Soda Lake

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The haloalkaliphilic microorganism Halonatronomonas betaini Z-7014Т was found to use glycine betaine as an electron acceptor in the Stickland reaction, resulting in its subsequent degradation to trimethylamine and acetate. The electron donors used were leucine, alanine, valine, isoleucine, and serine, as well as unidentified oligopeptides present in such protein hydrolysates as yeast extract, tryptone, peptone, and soytone. The most pronounced growth stimulation by betaine was observed in the presence of yeast extract. The substrate/product ratios were determined for the combinations of amino acids and betaine, and the balance equations were obtained. This is the first report on betaine degradation in the Stickland reaction by alkaliphilic microorganisms from soda lake biocenoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Alvarez-Coque, M.C., Hernandez, M.J., Camanas, R.M., and Fernandez, C., Studies on the formation and stability of isoindoles derived from amino acids, o-phthalaldehyde and N-acetyl-L-cysteine, Anal. Biochem., 1989, vol. 180, pp. 172–176.

    Article  Google Scholar 

  2. Annunziata, M.G., Ciarmiello, L.F., Woodrow, P., Dell’Aversana, E., and Carillo, P., Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses, Front. Plant. Sci., 2019, vol. 10, p. 230.

    Article  Google Scholar 

  3. Boltyanskaya, Y.V., Kevbrin, V.V., Grouzdev, D.S., Detkova, E.N., Koziaeva, V.V., Novikov, A.A., and Zhilina, T.N., Halonatronomonas betaini gen. nov., sp. nov., a haloalkaliphilic isolate from soda lake capable of betaine degradation, and proposal of Halarsenatibacteraceae fam. nov. and Halothermotrichaceae fam. nov. within the order Halanaerobiales, Syst. Appl., 2022 (in press).

  4. Drake, H.L., Acetogenesis, acetogenic bacteria, and the acetyl-CoA ‘‘Wood/Ljungdahl’’ pathway: past and current perspectives, in Acetogenesis, Drake H.L., Ed., New York: Chapman & Hall, 1994, pp. 3–60.

    Google Scholar 

  5. Fendrich, C., Hippe, H., and Gottschalk, G., Clostridium halophilium sp. nov. and C. litorale sp. nov., an obligate halophilic and a marine species degrading betaine in the Stickland reaction, Arch. Microbiol., 1990, vol. 154, pp. 127–132.

    Article  CAS  Google Scholar 

  6. Galinski, E.A. and Trüper, H.G., Microbial behaviour in salt-stressed ecosystems, FEMS Microbiol. Rev., 1994, vol. 15, pp. 95–108.

    Article  CAS  Google Scholar 

  7. Grant, W.D. and Jones, B.E., Bacteria, archaea and viruses of soda lakes, in Soda Lakes of East Africa, Schagerl, M., Ed., Springer Int., 2016, pp. 97‒147.

    Google Scholar 

  8. Heijthuijsen, J.H.F.G. and Hansen, T.A., Anaerobic degradation of betaine by marine Desulfobacterium strains, Arch. Microbiol., 1989, vol. 152, pp. 393‒396.

    Article  CAS  Google Scholar 

  9. La Cono, V., Arcadi, E., La Spada, G., Barreca, D., Laganà, G., Bellocco, E., Catalfamo, M., Smedile, F., Messina, E., Giuliano, L., and Yakimov, M.M., A three-component microbial consortium from deep-sea salt-saturated anoxic Lake Thetis links anaerobic glycine betaine degradation with methanogenesis, Microorganisms, 2015, vol. 3, pp. 500–517.

    Article  CAS  Google Scholar 

  10. Li, L., Zhang, W., Zhang, S., Song, L., Sun, Q., Zhang, H., Xiang, H., and Dong, X., Bacteria and archaea synergistically convert glycine betaine to biogenic methane in the Formosa cold seep of the South China Sea, mSystems, 2021, vol. 6, p. e0070321.

    Article  Google Scholar 

  11. Möller, B., Hippe, H., and Gottschalk, G., Degradation of various amine compounds by mesophilic clostridia, Arch. Microbiol., 1986, vol. 145, pp. 85–90.

    Article  Google Scholar 

  12. Möller, B., Oßmer, R., Howard, B.H., Gottschalk, G., and Hippe, H., Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov., Arch. Microbiol., 1984, vol. 139, pp. 388–396.

    Article  Google Scholar 

  13. Mouné, S., Manac’h, N., Hirschler, A., Caumette, P., Willison, J.C., and Matheron, R., Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 103–112.

    Article  Google Scholar 

  14. Müller, E., Fahlbusch, K., Walther, R., and Gottschalk, G., Formation of N,N-dimethylglycine, acetic acid, and butyric acid from betaine by Eubacterium limosum, Appl. Environ. Microbiol., 1981, vol. 42, pp. 439–445.

    Article  Google Scholar 

  15. Naumann, E., Hippe, H., and Gottschalk, G., Betaine: new oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by a Clostridium sporogenes‒Methanosarcina barkeri coculture, Appl. Environ. Microbiol., 1983, vol. 45, pp. 474–483.

    Article  CAS  Google Scholar 

  16. Oren, A., Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments, Antonie van Leeuwenhoek, 1990, vol. 58, pp. 291–298.

    Article  CAS  Google Scholar 

  17. Sorokin, D.Y., Microbial utilization of glycine betain in hypersaline soda lakes, Microbiology (Moscow), 2021, vol. 90, pp. 569–577.

    Article  CAS  Google Scholar 

  18. Tsai, C.-R., Garcia, J.-L., Patel, B.K.C., Cayol, J.-L., Baresi, L., and Mah, R.A., Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake, Utah, Int. J. Syst. Bacteriol., 1995, vol. 45, pp. 301–307.

    Article  CAS  Google Scholar 

  19. Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., and Somero, G.N., Living with water stress: evolution of osmolyte systems, Science, 1982, vol. 217, pp. 1214‒1222.

    Article  CAS  Google Scholar 

  20. Zhilina, T.N. and Zavarzin, G.A., A new extremely halophilic homoacetate bacterium Acetohalobium arabaticum gen. nov., sp. nov., Dokl. Akad. Nauk SSSR, 1990, vol. 311, pp. 745–747.

    CAS  Google Scholar 

  21. Zimbro, M.J. and Power, D.A. (eds.), Difco & BBL Manual, Sparks, MD: Becton, Dickinson and Co., 2003.

    Google Scholar 

  22. Zindel, U., Freudenberg, W., Rieth, M., Andreesen, J.R., Schnell, J., and Widdel, F., Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Description and enzymatic studies, Arch. Microbiol., 1988, vol. 150, pp. 254–266.

    Article  CAS  Google Scholar 

  23. Zou, H., Chen, N., Shi, M., Xian, M., Song, Y., and Liu, J., The metabolism and biotechnological application of betaine in microorganism, Appl. Microbiol. Biotechnol., 2016, vol. 100, pp. 3865–3876.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to T.N. Zhilina for providing strain Z-7014Т for this work.

Funding

The work was supported by the Russian Federation Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kevbrin.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Detkova, E.N., Boltyanskaya, Y.V. & Kevbrin, V.V. Glycine Betaine Degradation via the Stickland Reaction by a Haloalkaliphilic Bacterium Halonatronomonas betaini Isolated from the Tanatar III Soda Lake. Microbiology 91, 721–726 (2022). https://doi.org/10.1134/S0026261722601609

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722601609

Keywords:

Navigation