Skip to main content
Log in

A Bioreactor Culture of Mesophilic Consortia Maintains the Stability of Microbial Community and Accelerates the Regeneration of Ferric Iron

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The microbial community composition is crucial for metal extraction from solid waste by bioleaching. However, bioreactor output of bioleachant with a diverse microbial population is a great challenge due to the different growth conditions of each species. This study reports an immobilized bioreactor for the cultivation of mesophilic consortia. The optimal conditions for iron oxidation were pH 1.5, dilution of 0.382 h–1, the temperature of 30°C, and 12 g/L ferrous iron. The coexistence relationship of Acidithiobacillus ferrooxidans, Acidithiobacillus ferrivorans, and Acidiphilium spp. was relatively stable in a wider range of conditions. Further kinetics investigation showed that ferrous iron oxidation fitted well with the substrate free inhibition model of Michaelis−Menten equation below 12 g/L ferrous iron, indicating that the immobilized bioreactor culturing mesophilic consortia slowed down the inhibition process caused by the substrate and end-product. These key features would enable bioreactor design more efficient during industrial applications of biolea-ching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ahoranta, S., Hulkkonen, H., Salminen, T., Kuula, P., Puhakka, J.A., and Lakaniemi, A.M., Formation and use of biogenic jarosite carrier for high-rate iron oxidising biofilms, Res. Microbiol, 2020, vol. 171, no. 7, pp. 243–251.

    Article  CAS  PubMed  Google Scholar 

  2. Alemzadeh, I., Kahrizi, E., and Vossoughi, M., Bio-oxidation of ferrous ions by Acidithioobacillus ferrooxidans in a monolithic bioreactor, J. Chem. Technol. Biotechnol., 2009, vol, 84, no. 4, pp. 504–510.

    Article  Google Scholar 

  3. Armentia, H. and Webb, C. Ferrous sulfate oxidation using Thiobacillus ferrooxidans cells immobilized in polyurethane foam support particles, Appl. Microbiol. Biotechnol., 1992, vol. 36, no. 5, pp. 697–700.

    Article  CAS  Google Scholar 

  4. Aytar, P., Kay, C.M., Mutlu, M.B., and Çabuk, A., Coal Desulfurization with Acidithiobacillus ferrivorans, from Balya Acidic Mine Drainage, Energy & Fuels, 2013, vol. 27, no. 6, pp. 3090–3098.

    Article  CAS  Google Scholar 

  5. Boxall, N.J., Cheng, K.Y., du Plessis, C.A., Collinson, D., Morris, C., Streltsova, N., Seaman, B., Seaman, D., Vollert, L., and Kaksonen, A.H., Increasing cell concentration does not affect specific ferrous iron oxidation rate in a continuously stirred tank bioreactor, Hydrometallurgy, 2018, vol. 181, pp. 189–194.

    Article  CAS  Google Scholar 

  6. Chowdhury, F. and Ojumu, T.V., Investigation of ferrous-iron biooxidation kinetics by Leptospirillum ferriphilum in a novel packed-column bioreactor: effects of temperature and jarosite accumulation, Hydrometallurgy, 2014, vol. 141, pp. 36–42.

    Article  CAS  Google Scholar 

  7. Demir, E.K., Yaman, B.N., Çelik, P.A., and Sahinkaya, E., Iron oxidation in a ceramic membrane bioreactor using acidophilic bacteria isolated from an acid mine drainage. J. Water Proc. Eng., 2020, vol. 38, art. 101610.

  8. Hallberg, K.B., Gonzalez-Toril, E., and Johnson, D.B., Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments, Extremophiles, 2010, vol. 14, no. 1, pp. 9–19.

    Article  CAS  PubMed  Google Scholar 

  9. Hubau, A., Minier, M., Chagnes, A., Joulian, C., Perez, C., and Guezennec, A.-G., Continuous production of a biogenic ferric iron lixiviant for the bioleaching of printed circuit boards (PCBs), Hydrometallurgy, 2018a, vol. 180, pp. 180–191.

    Article  CAS  Google Scholar 

  10. Hubau, A., Minier, M., Chagnes, A., Joulian, C., Perez, C., and Guezennec, A.-G., Continuous production of a for the bioleaching of printed circuit boards (PCBs), Hydrometallurgy, 2018b, vol. 180, pp. 180–191.

    Article  CAS  Google Scholar 

  11. Isildar, A., van Hullebusch, E.D., Lenz, M., Du Laing, G., Marra, A., Cesaro, A., Panda, S., Akcil, A., Kucu-ker, M.A., and Kuchta, K., Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)—a review, J. Hazard. Mater., 2019, vol. 362, pp. 467–481.

    Article  CAS  PubMed  Google Scholar 

  12. Islam, A., Ahmed, T., Awual, M.R., Rahman, A., Sultana, M., Abd Aziz, A., Monir, M.U., Teo, S.H., and Hasan, M., Advances in sustainable approaches to recover metals from e-waste-A review, J. Cleaner Prod., 2020, vol. 244.

  13. Kaksonen, A.H., Boxall, N.J., Gumulya, Y., Khaleque, H.N., Morris, C., Bohu, T., Cheng, K.Y., Usher, K.M., and Lakaniemi, A.-M., Recent progress in biohydrometallurgy and microbial characterisation, Hydrometallurgy, 2018, vol. 180, pp. 7–25.

    Article  CAS  Google Scholar 

  14. Kaksonen, A.H., Morris, C., Rea, S., Li, J., Wylie, J., Usher, K.M., Ginige, M.P., Cheng, K.Y., Hilario, F., and du Plessis, C.A., Biohydrometallurgical iron oxidation and precipitation: Part I - Effect of pH on process performance, Hydrometallurgy, 2014, vol. 147, pp. 255–263.

    Article  Google Scholar 

  15. Kaksonen, A.H., Morris, C., Wylie, J., Li, J., Usher, K., Hilario, F., and du Plessis, C.A., Continuous flow 70 C archaeal bioreactor for iron oxidation and jarosite precipitation, Hydrometallurgy, 2017, vol. 168, pp. 40–48.

    Article  CAS  Google Scholar 

  16. Liu, R., Chen, Y., Tian, Z., Mao, Z., Cheng, H., Zhou, H., Wang, W., Enhancing microbial community performance on acid resistance by modified adaptive laboratory evolution, Bioresour. Technol., 2019a, vol. 287, 121416.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, R., Wang, W., Zhou, W., Cheng, H., and Zhou, H., Acid catalysis coupling bioleaching for enhancement of metals removal from waste resin powder, J. Cleaner Prod., 2019b, vol. 247, art. 119130.

    Article  Google Scholar 

  18. Livak, K.J. and Schmittgen, T.D.J.M., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 2001, vol. 25, no. 4, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  19. Li, X.Z., Mercado, R., Kernan, T., West, A.C., and Banta, S., Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated ph and reduces ferric inhibition, Biotechnol. Bioeng., 2014, vol. 111, no. 10, pp. 1940–1948.

    Article  CAS  PubMed  Google Scholar 

  20. Mazuelos, A., Carranza, F., Romero, R., Iglesias-Gonzalez, N., and Villalobo, E., Operational pH in packed-bed reactors for ferrous ion bio-oxidation, Hydrometallurgy, 2010, vol. 104, no. 2, pp. 186–192.

    Article  CAS  Google Scholar 

  21. Mazuelos, A., Moreno, J.M., Carranza, F., Palomino, C., Torres, A., and Villalobo, E., Biotic factor does not limit operational pH in packed-bed bioreactor for ferrous iron biooxidation, J. Ind. Microbiol. Biotechnol., 2012, vol. 39, no. 12, pp. 1851–1858.

    Article  CAS  PubMed  Google Scholar 

  22. Mazuelos, A., Palencia, I., Romero, R., Rodrigues, G., and Carranza, F., Ferric iron production in packed bed bioreactors: influence of pH, temperature, particle size, bacterial support material and type of air distributor, Miner. Eng., 2001, vol. 14, no. 5, pp. 507–514.

    Article  CAS  Google Scholar 

  23. Mousavi, S.M., Yaghmaei, S., Salimi, F., and Jafari, A., Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part I: flask experiments, Fuel, 2006, vol. 85, nos. 17−18, pp. 2555–2560.

    Article  CAS  Google Scholar 

  24. Ojumu, T.V. and Petersen, J., The kinetics of ferrous ion oxidation by Leptospirillum ferriphilum in continuous culture: the effect of pH, Hydrometallurgy, 2011, vol. 106, nos. 1–2, pp. 5–11.

    Article  CAS  Google Scholar 

  25. Pourhossein, F. and Mousavi, S.M., A novel step-wise indirect bioleaching using biogenic ferric agent for enhancement recovery of valuable metals from waste light emitting diode (WLED), J. Hazard. Mater., 2019, vol. 378, art. 120648.

    Article  CAS  PubMed  Google Scholar 

  26. Rebello, S., Anoopkumar, A.N., Aneesh, E.M., Sindhu, R., Binod, P., Kim, S.H., and Pandey, A., Hazardous minerals mining: challenges and solutions, J. Hazard. Mater., 2012, vol. 402, art. 123474.

    Article  Google Scholar 

  27. Robbins, E.I., Bacteria and Archaea in acidic environments and a key to morphological identification, Hydrobiologia, 2000, vol. 433, no. 1–3, pp. 61–89.

    Article  Google Scholar 

  28. Santaolalla, A., Gutierrez, J., Gallastegui, G., Barona, A., and Rojo, N., Immobilization of Acidithiobacillus ferrooxidans in bacterial cellulose for a more sustainable bioleaching process, J. Environ. Chem. Eng., 2021, vol. 9, no. 4, p. 105283.

    Article  CAS  Google Scholar 

  29. Tekin, D., Yoruk, S., and Bayhan, Y.K., The effect of temperature on rate of bacterial oxidation of Fe(II), Bulg. Chem. Commun., 2014, vol. 46, no. 1, pp. 117–119.

    CAS  Google Scholar 

  30. Tian, Q., Guo, B., Nakama, S., and Sasaki, K., Distributions and leaching behaviors of toxic elements in fly ash, Miner. Eng., 2018, vol. 3, no. 10, pp. 13 055–13 064.

    Google Scholar 

  31. Wang, Y., Su, L., Zeng, W., Wan, L., Chen, Z., Zhang, L., Qiu, G., Chen, X., and Zhou, H., Effect of pulp density on planktonic and attached community dynamics during bioleaching of chalcopyrite by a moderately thermophilic microbial culture under uncontrolled conditions, Miner. Eng., 2014, vol. 61, pp. 66–72.

    Article  CAS  Google Scholar 

  32. Watling, H.R., Collinson, D.M., Shiers, D.W., Bryan, C.G., and Watkin, E.L.J., Effects of pH, temperature and solids loading on microbial community structure during batch culture on a polymetallic ore, Miner. Eng., 2013, vol. 48, pp. 68–76.

    Article  CAS  Google Scholar 

  33. Xiao, C.Q., Chi, R.-A., and Fang, Y.-j., Effects of Acidiphilium cryptum on biosolubilization of rock phosphate in the presence of Acidithiobacillus ferrooxidans, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, no. 7, pp. 2153–2159.

    Article  CAS  Google Scholar 

  34. Yavari, M., Ebrahimi, S., Aghazadeh, V., and Ghashghaee, M., Kinetics of different bioreactor systems with Acidithiobacillus ferrooxidans for ferrous iron oxidation, React. Kinet., Mech. Catal., 2019, vol. 128, no. 2, pp. 611−627.

  35. Ye, M.Y., Liang, J.L., Liao, X.J., Li, L.L., Feng, X.D., Qian, W., Zhou, S.Y., and Sun, S.Y., Bioleaching for detoxification of waste flotation tailings: relationship between EPS substances and bioleaching behavior, J. Environ. Manage. vol. 279, art. 111795.

Download references

Funding

This work was supported by National Natural Science Foundation of China (32 100 021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Liu.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest. Statement on the welfare of animals. This article does not contain any studies involving animals or human participants.

AUTHORS’ CONTRIBUTIONS

The idea of the study was proposed by T.L. and R.H.L. Experiments were designed and performed by R.H.L.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Liu, R. & Zhou, H. A Bioreactor Culture of Mesophilic Consortia Maintains the Stability of Microbial Community and Accelerates the Regeneration of Ferric Iron. Microbiology 92, 715–724 (2023). https://doi.org/10.1134/S0026261722601543

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722601543

Keywords:

Navigation