Skip to main content
Log in

The Effects of Lactic Acid Bacteria on Salmonella Biofilms

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The anti-biofilm effects of the following probiotic LAB strains: Lactobacillus plantarum M16 (producer of plantarisin), Lactobacillus sake M17 (producer of sakacin), Pediococcus acidilactici M20 (producer of pediocin), Bifidobacterium longum M23 (bifidosin A producer strain), Bifidobacterium bifidum M24 (bifidocin B producer strain), and Pediococcus pentosaceus M46 (bacteriocin like substance producer strain) on the formation and eradication of mature Salmonella Typhimurium 14 028 biofilms were investigated. The strains were previously isolated from fermented foods traditionally produced in Turkey and identified. Biofilm formation by Salmonella Typhimurium 14 028 was completely inhibited after treatment with the cell-free filtrates of lactic acid bacteria. The amount of mature biofilms dropped at statistically significant levels after six hours (p < 0.05) only as the result of treatment with Pediococcus pentosaceus M46 cell-free filtrate, rather than with other cell-free filtrates. On the other hand, the cell-free filtrates of the other LAB strains promoted biofilm maturation. Biofilm assays were carried out with neutralized cell-free filtrates and neutralized cell-free filtrates treated with proteinase K to determine the source of the antibiofilm activity. The antibiofilm activities that were initially determined dropped statistically significantly (p < 0.05) as a result of both treatments. Based on these findings, the probiotic strains isolated from Turkey exhibited particularly significant antibiofilm capabilities, which were mostly due to the bacteriocins produced by these strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Afdora, P.T., Ardiyati, T., Sjofjan, O., and Kalsum, U., Potential antibacterials compounds of lactic acid bacteria (LAB) from quail intestine (Coturnix japonica) in inhibition growth of Escherichia coli and Salmonella typhimurium, J. Trop. Life Sci., 2010, vol. 1, pp. 28‒31.

    Article  Google Scholar 

  2. Barzegari, A., Kheyrolahazadeh, K., Khatibi, S.M.H., Sharifi, S., Memar, My., and Vahed, S.Z., The battle of Probiotics and their derivatives against biofilms, Infect. Drug Resist., 2020, vol. 13, pp. 659‒672.

    Article  CAS  Google Scholar 

  3. Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., and Lappin-Scott, H.M., Microbial biofilms, Annu. Rev. Microbiol.,1995, vol. 49, pp. 711‒745.

    Article  CAS  Google Scholar 

  4. Cui, X., Shi, Y., Gu, S., Yan, X., and Chen, H., Antibacterial and antibiofilm activity of lactic acid bacteria isolated from traditional artisanal milk cheese from northeast China against enteropathogenic bacteria, Probiotics and Antimicrobial Proteins, 2018, vol. 10, pp. 601‒610.

    Article  CAS  Google Scholar 

  5. Davey, M.E. and O’toole, G.A., Microbial biofilms: from ecology to molecular genetics, Microbiol. Mol. Biol. Rev., 2000, vol. 64, pp. 847‒867.

    Article  CAS  Google Scholar 

  6. De Vuyst, L. and Leroy, F., Bacteriocins from lactic acid bacteria: production, purification, and food applications, J. Mol. Microbiol. Biotechnol., 2007, vol. 13, pp. 194‒199.

    Article  CAS  Google Scholar 

  7. Forde, A. and Fitzgerald, G.F., Molecular organization of exopolysaccharide (EPS) encoding genes on the lactococcal bacteriophage adsorption blocking plasmid, pCI658, Plasmid, 2003, vol. 49, pp. 130‒142.

    Article  CAS  Google Scholar 

  8. Galvez, A., Abriouel, H., Benomar, N., and Lucas, R., Microbial antagonists to food-borne pathogens and biocontrol, Curr. Opin. Biotechnol., 2010, vol. 21, pp. 142‒148.

    Article  CAS  Google Scholar 

  9. Ge, J., Sun, Y., Xin, X., Wang, Y., and Ping, W., Purification and partial characterization of a novel bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice, Sci. Rep., 2016, vol. 6, pp. 1‒7.

    Article  Google Scholar 

  10. Gomez, N.C., Rasmiro, J.M.P., Quecan, B.X.V., and Franco, B.D.G., Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 biofilms formation, Front. Microbiol., 2016, vol. 12, pp. 1‒15.

    Google Scholar 

  11. Gunn, J.S., Marshall, J.M., Baker, S., Dongol, S., Charles, R.C., and Ryan, E.T., Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence, Trends Microbiol., 2014, vol. 22, pp. 648–655.

    Article  CAS  Google Scholar 

  12. Hahn, M.M. and Gunn, J.S., Salmonella extracellular polymeric substances modulate innate phagocyte activity and enhance tolerance of biofilm-associated bacteria to oxidative stress, Microorganisms, 2020, vol. 8, pp. 253‒272.

    Article  CAS  Google Scholar 

  13. Hall-Stoodley, L., Hu, F.Z., Gieseke, A., Nistico, L.N., Hayes, J., and Wackym, P.A., Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media, JAMA, 2006, vol. 296, pp. 202‒211.

    Article  CAS  Google Scholar 

  14. Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O., Antibiotic resistance of bacterial biofilms, Int. J. Antimicrob. Agents, 2010, vol.35, pp. 322‒332.

    Article  Google Scholar 

  15. Houndt, R.V. and Michiels, C.W., Biofilm formation and the food industry, a focus on the bacterial outer surface, J. Appl. Microbiol., 2010, vol. 109, pp. 1117‒1131.

    Article  Google Scholar 

  16. Joseph, B., Otta, S.K., Karunasagar, I., and Karunasagar, J., Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers, Int. J. Food Microbiol., 2001, vol. 64, pp. 367‒372.

    Article  CAS  Google Scholar 

  17. Karpanen, T.J., Worthington, T., Hendry, E.R., Conway, B.R., and Lambert, P.A., Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil, and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis, J. Antimicrob. Chemother., 2008, vol. 62, pp. 1031‒1036.

    Article  CAS  Google Scholar 

  18. Khan, A., Vu, K.D., Riedl, B., and Lacroix, M., Optimization of the antimicrobial activity of nisin, Na-EDTA, and pH against Gram-negative and Gram-positive bacteria, LWT-Food Sci. Technol., 2015, vol. 61, pp. 124‒129.

    Article  CAS  Google Scholar 

  19. Kim, N.N., Kim, W.J., and Kang, S.S., Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium, Food Control, 2019, vol.98, pp. 274‒280.

    Article  CAS  Google Scholar 

  20. Lee, H.J., Jeong, S.E., Kim, P.J., Madsen, E.L., and Jeon, C.O., High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy, Front. Microbiol., 2015, vol. 6, pp. 1‒13.

    Google Scholar 

  21. Levkovich, T., Poutahidis, T., Smillie, C., Varian, B.J., Ibrahim, Y.M., Lakritz, J.R., and Erdman, S.E., Probiotic bacteria induce a ‘glow of health,’  PLoS One, 2013, vol. 8, e53867.

    Article  CAS  Google Scholar 

  22. Li, P., Gu, Q., and Zhou Q., Complete genome sequence of Lactobacillus plantarum LZ206, a potential probiotic strain with antimicrobial activity against food-borne pathogenic microorganisms, J. Biotechnol., 2016, vol. 238, pp. 52‒55.

    Article  CAS  Google Scholar 

  23. Mulet-Powell, N., Lacoste-Armynot, A.M., and De Bouchberg, M.S., Interactions between pairs of bacteriocins from lactic acid bacteria, J. Food Prot., 1998, vol. 61, pp. 1210‒1212.

    Article  CAS  Google Scholar 

  24. Norhana, M.W., Poole, S.E., Deeth, H.C., and Dykes, G.A., Effects of nisin, EDTA and salts of organic acids on Listeria monocytogenes, Salmonella and native microflora on fresh vacuum packaged shrimps stored at 4°C, Food Microbiol., 2012, vol. 31, pp. 43‒50.

    Article  Google Scholar 

  25. Pelyuntha, W., Chaiyasut, C., Kantachote, D., and Sirilun, S., Cell-free supernatants from cultures of lactic acid bacteria isolated from fermented grape as biocontrol against Salmonella Typhi and Salmonella Typhimurium virulence via autoinducer-2 and biofilm interference, Peer J., 2019, vol. 7, pp. 7555‒7570.

    Article  Google Scholar 

  26. Petrova, M.I., Imholz, N.C.E., Verhoeven, T.L.A., Balzarini, J., Van Damme, E.J.M., Schols, D., Vanderleyden, J., and Lebeer, S., Lectin-like molecules of Lactobacillus rhamnosus GG inhibit pathogenic Escherichia coli and Salmonella biofilm formation, PLos One, 2016, vol. 11, e0161337.

    Article  Google Scholar 

  27. Post, J.C., Hall-Stoodley, P., and Ehrlich, G.D., The role of biofilms in otolaryngologic infections, Curr. Opin. Otolaryngol. Head Neck Surg., 2004, vol. 12, pp. 185‒190.

    Article  Google Scholar 

  28. Roy, R., Tiwari, M., Donelli, G., and Tiwari, V., Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action, Virulence, 2018, vol. 9, pp. 522‒554.

    Article  CAS  Google Scholar 

  29. Stepanović, S., Vuković, D., Dakić, I., Savić, B., and Šv-abić-Vlahović, M.A., Modified microtiter-plate test for quantification of staphylococcal biofilm formation, J. Microbiol. Methods, 2000, vol.40, pp. 175–179.

    Article  Google Scholar 

  30. Su, J., Wu, Y., Ma, X., Zhang, G., Feng, H., and Zhang, Y., Soil microbial counts and identification of culturable bacteria in an extreme by arid zone, Folia Microbiol., 2004, vol. 49, pp. 423‒429.

    Article  CAS  Google Scholar 

  31. Teuber, M., Production of chymosin (EC 3.4.23.4) by microorganisms and its use for cheesemaking, Bull. Int. Dairy Fed., 1990, vol. 251, pp. 3‒15.

    CAS  Google Scholar 

  32. Van Belkum, M.J., Hayema, B.J., Geis, A., Kok, J., and Venema, G., Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid, Appl. Environ. Microbiol., 1989, vol. 55, pp. 1187‒1191.

    Article  CAS  Google Scholar 

  33. Vestby, L.K., Møretrø, T., Langsrud, S., Heir, E., and Nesse, L.L., Biofilm forming abilities of Salmonella are correlated with persistence in fish meal-and feed factories, BMC Vet. Res., 2009, vol.5, pp. 20‒29.

    Article  Google Scholar 

  34. Viedma, P.M., Abriouel, H., Lopez, A.S., Omar, N.B., Lopez, R.S., Valdiva, E., Belloso, O.V., and Galvez, A., Effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against the spoilage bacterium Lactobacillus diolivorans in apple juice, Food Microbiol., 2009, vol.26, pp. 491‒496.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Prof. Hilmi Volkan Demir (National Nanotechnology Center, Bilkent University, UNAM), who let us work with a scanning electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akçelik.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

AUTHORS CONTRIBUTION

M. Akçelik participated in designing and performing experiments, processing, and interpreting data, and preparing, writing, and revising the manuscript. Ş. Göksel participated in performing experiments, processing data, and preparation of the manuscript. N. Akçelik assisted in designing experiments, processing, and interpreting the data. C. Özdemir participated in biofilm assays, scanning electron microscopic examinations and processing data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göksel, Ş., Akçelik, N., Özdemir, C. et al. The Effects of Lactic Acid Bacteria on Salmonella Biofilms. Microbiology 91, 278–285 (2022). https://doi.org/10.1134/S0026261722300129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722300129

Keywords:

Navigation