Skip to main content
Log in

Soil microbial counts and identification of culturable bacteria in an extreme by arid zone

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Sixteen samples of two soil cores (about 550 and 180 cm in depth) were drilled at intervals in the lower reach of Heihe river basin (northwest of China) in order to illustrate soil microbial characteristics and diversity of culturable bacteria in an extreme by arid environment. Soil water content, organic matter, total nitrogen, pH, direct cell counts, and culturable microorganism counts were evaluated. The total cell concentration was 19–1120/µg (i.e. 0.19–11.2 × 108 per g) soil, the culturable bacteria count being 0.2–10.9 per µg (i.e. 2 × 105–10.9 × 106 CFU/g) soil. The number of direct cell counts obtained by 4′,6-diamidino-2-phenylindole-staining or the cound of culturable microbes after enrichment with different media were statistically significantly correlated with soil organic matters, total nitrogen content, soil water content and surface vegetation; this partly explained the larger number in the deeper first core than in the shallower one. As part of identification of 228 colonies isolated from the two cores, thirty-two were selected for 16S rDNA amplification, sequencing and molecular identification. These 32 isolates were affiliated to 5 major groups of bacteria: α-Proteobacteria, β-Proteobacteria, λ-Proteobacteria, the high-G+C G+-bacteria, the low-G+C G-bacteria, and theCytophaga-Flexibacter-Bacteroides group. Twenty-eight were rod- or short-rod shaped, which accounted for >87.5 % of all species; only 4 of 32 species were cocci (<12.5 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balkwill D.L., Reeves R.H., Drake G.R., Reeves J.Y., Crocker F.H., King M.B., Boone D.R.: Phylogenetic characterization of bacteria in the subsurface microbial culture collection.FEMS Microbiol.Rev. 20, 191–200 (1997).

    Article  Google Scholar 

  • Balkwill D.L.: Numbers, diversity, and morphological characteristics of aerobic, chemoheterophic bacteria in deep subsurface sediments from a site in South Carolina.Geomicrobiol.J. 7, 33–52 (1989).

    Article  Google Scholar 

  • Bogoev V.M., Kenarova A.E., Vasilev V.L., Gyosheva M.M.: Quantitative distribution of microbial biomass in the soil profile of a high-mountain grassy ecosystem.Folia Microbiol. 48, 56–60 (2002).

    Article  Google Scholar 

  • Cajthaml T., Bhatt M., Šasek V., Matějů V.: Bioremediation of PAH-contaminated soil by composting: a case study.Folia Microbiol. 48, 696–700 (2002).

    Article  Google Scholar 

  • Cheng G.D.: Study on the sustainable development in Heihe river basin from the view of ecological economics.J.Glaciol.Geocryol. 24, 335–343 (2002).

    Google Scholar 

  • Derry A.M., Staddon W.J., Kevan P.G., Trevors J.T.: Functional diversity and community structure of microorganisms in three arctic soils as determined by SCSU.Biodivers.Conserv. 8, 205–221 (1999).

    Article  Google Scholar 

  • El-Hendawy H.H., Osman M.E., Sorour N.M.: Characterization of two antagonistic strains ofRahnella aquatilis isolated from soil in Egypt.Folia Microbiol. 48, 799–804 (2003).

    Article  CAS  Google Scholar 

  • El-Komy H.M.A., Saad O.A.O., Hetta A.M.A.: Significance ofHerbaspirillum seropedicae inoculation and/or straw amendment on growth and dinitrogen fixation of wheat using15N-dilution method.Folia Microbiol. 48, 787–793 (2003).

    Article  CAS  Google Scholar 

  • Elhottova D., Szili-Kovács T., Třiska J.: Soil microbial community of abandoned sand fields.Folia Microbiol. 48, 435–440 (2002).

    Article  Google Scholar 

  • Gilichinsky D.A., Soina V.S., Petrova M.A.: Cryoprotective properties of water in the earth cryolithosphere and its role in exobiology.Origins Life Evol.Biosph. 23, 65–75 (1993).

    Article  CAS  Google Scholar 

  • Gilichinsky D.A., Wagener S.: Microbial life in permafrost: a historical review.Permafrost Periglac.Proc. 6, 234–250 (1995).

    Google Scholar 

  • Horneck G.: The microbial world and the case for Mars.Planet.Space Sci. 48, 1053–1063 (2000).

    Article  CAS  Google Scholar 

  • Hoyle B.L., Arthur E.L.: Biotransformation of pesticides in saturated-zone materials.Hydrogeol.J. 8, 89–103 (2000).

    Article  CAS  Google Scholar 

  • Junge K., Imhoff F., Staley T., Dewing J.W.: Phylogenetic diversity of numerically important arctic sea-ice bacteria cultured at subzero temperature.Microb.Ecol. 43, 315–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kandelerl E., Marschner P., Tscherko D., Gahoonia T.S., Nielsen N.E.: Microbial community composition and functional diversity in the rhizosphere of maize.Plant & Soil 238, 301–312 (2002).

    Article  Google Scholar 

  • Kaneko T., Atlas R.: Diversity of bacterial populations in the Beaufort Sea.Nature 270, 596–599 (1977).

    Article  Google Scholar 

  • Kao C.M., Chen S.C., Chen Y.S., Lin H.M., Chen Y.L.: Detection ofBurkholderia pseudomallei in rice fields with PCR-based technique.Folia Microbiol. 48, 521–524 (2003).

    Article  CAS  Google Scholar 

  • Krumholz L.R.: Microbial communities in the deep subsurface.Hydrogeol.J. 8, 4–10 (2000).

    Google Scholar 

  • Llobet-Brossa E., Rosselló-Mora R., Amann R.: Microbial community composition of Wadden Sea sediments as revealed by fluorescencein situ hybridization.Appl.Environ.Microbiol. 64, 2691–2696 (1998).

    PubMed Central  PubMed  Google Scholar 

  • Marilley L., Aragno M.: Phylogenetic diversity of bacterial communities differing in degree of proximity ofLolium perenne andTrifolium repens roots.Appl.Soil Ecol. 13, 127–136 (1999).

    Article  Google Scholar 

  • Mohapatra B.R., Bapuji M., Sree A.: Antifungal efficacy of bacteria isolated from marine sedentary organisms.Folia Microbiol. 48, 51–55 (2002).

    Article  Google Scholar 

  • Moyer L.C., Dobbs F.C., Karl D.M.: Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamountm, Hawaii.Appl.Environ.Microbiol. 61, 1555–1562 (1995).

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohtonen R., Väre H.: Vegetation composition determined microbial activities in a boreal forest soil.Microb.Ecol. 36, 328–335 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Parkes R.J., Cragg B.A., Wellsburg C.: Recent studies on bacterial populations and processes in subseafloor sediments (review).Hydrogeol.J. 8, 11–28 (2000).

    Article  Google Scholar 

  • Salama R.B., Otto C.J., Fitzpatrick R.W.: Contributions of surface water conditions to soil and water salinization.Hydrogeol.J. 7, 46–64 (1999).

    Article  Google Scholar 

  • Sayed W.F., El-Sharouny H.M., Zahran H.H., Ali W.M.: Composition ofCasuarina leaf litter and its influence onFrankia-Casuarina symbiosis in soil.Folia Microbiol. 48, 429–434 (2002).

    Article  Google Scholar 

  • Scholter M., Lebuhn M., Heulin T., Hartmann A.: Ecology and evolution of bacterial microdiversity.FEMS Microbiol.Rev. 24, 647–660 (2000).

    Article  Google Scholar 

  • Shi T., Reeves R.H., Gilichinsky D.A., Friedmann E.I.: Characterization of culturable bacteria from Siberian permafrost by 16S rDNA sequencing.Microb.Ecol. 33, 169–179 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Staddon W.J., Trevors J.T., Duchesne L.C., Colombo C.A.: Soil microbial diversity and community structure across a climatic gradient in western Canada.Biodivers.Conservat. 7, 1081–1092 (1998).

    Article  Google Scholar 

  • Tiedje J.M., Asuming-Brempong S., Nusslein K., Marsh T.L., Flynn S.J.: Opening the black box of soil microbial diversity.Appl.Soil Ecol. 13, 109–122 (1999).

    Article  Google Scholar 

  • Vorobyova E., Sonia V., Gorlenko M., Minkovskaya N., Zalina N., Mamukelashvili A., Gilichinsky D., Rivkina E., Vishnivetskaya T.: The deep cold biosphere: facts and hypothesis.FEMS Microbiol.Rev. 20, 277–290 (1997).

    Article  CAS  Google Scholar 

  • Wahlström G., Danilov R.A.: Phytoplankton successions under ice cover in four lakes located in North-Eastern Sweden: effects of liming.Folia Microbiol. 48, 379–384 (2003).

    Article  Google Scholar 

  • Xia B.C., Zhou J.Z., Tiedje J.M.: Structures of bacteria cloning communities in the soil environment and their ecological characteristics.Acta Ecol.Sinca 21, 574–578 (2001).

    Google Scholar 

  • Zahran H.H., Abdel-Fattah M., Ahmad M.S., Zaky A.Y.: Polyphasic taxonomy of symbiotic rhizobia from wild leguminous plants growing in Egypt.Folia Microbiol. 48, 510–520 (2003).

    Article  CAS  Google Scholar 

  • Zak D.R., Grigal D.R., Gleeson S., Tilman D.: Carbon and nitrogen cycling during old-field succession: constraints on plant and microbial biomass.Biogeochemistry 11, 111–129 (1990).

    Article  Google Scholar 

  • Zak D.R., Tilman D., Parmenter R.R., Rice C.W., Fisher F.M., Vose J., Milchunas D., Martin C.W.: Plant production and soil microorganisms in late-successional ecosystems: a continental scale study.Ecology 75, 2333–2347 (1994).

    Article  Google Scholar 

  • Zhang X.J., Ma X.J., Yao T.D., Zhang G.S.: Diversity of 16S rDNA and environmental factor influencing microorganisms in Malan ice core.Chinese Sci.Bull. 48, 1146–1151 (2003).

    Article  CAS  Google Scholar 

  • Zhang X.J., Yao T.D., Ma X.J., Wang N.L.: Microorganisms in a high altitude glacier ice in Tibet.Folia Microbiol. 47, 241–245 (2002).

    Article  CAS  Google Scholar 

  • Zhou J., Davey M.E., Figueras J.B., Rivkina E., Gilichinsky D., Tiedjie J.M.: Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA.Microbiology 143, 3913–3919 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huyuan Feng.

Additional information

This work was funded byNatural Science Foundation of China (no. 9010 2003),Knowledge-Innovation Projects of Chinese Academy of Sciences (KZCX1-09, KZCX1-10-03),China Postdoctoral Fund andState Key Laboratories of Frozen Soil and Engineering (CAREERI),Chinese Academy of Sciences (SKLFSE 200305).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, J., Wu, Y., Ma, X. et al. Soil microbial counts and identification of culturable bacteria in an extreme by arid zone. Folia Microbiol 49, 423–429 (2004). https://doi.org/10.1007/BF02931604

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931604

Keywords

Navigation