Skip to main content
Log in

Genome Analysis of Two Lichen Bacteriobionts, Lichenibacterium ramalinae and Lichenibacterium minor: Toxin‒Antitoxin Systems and Secretion Proteins

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The genomes of two bacteriobionts of the fruticose lichen Ramalina pollinaria, Lichenibacterium ramalinae and L. minor, were analyzed. Genetic determinants potentially determining the integration and adaptation of these bacteria in the lichen thallus were identified. This is the first report on assessment of genetic determinants of the stress reaction factors and secretion systems of lichen bacteriobionts. The genes encoding the proteins of the VapCB toxin–antitoxin (TA) systems exhibited >60% homology with the genes of the known plant symbionts Bradyrhizobium, Sinorhizobium, Agrobacterium, Mesorhizobium, and Ralstonia, as well as with those of a human pathogen Bartonella. The genes encoding the proteins of type II secretion system were found in the genomes of both species. The genes encoding type IV secretion proteins were found only in the genome of L. ramalinae; they were homologous to those of epiphytic Methylobacterium, plant pathogens Agrobacterium, and plant root symbionts Rhizobium and Neorhizobium. Homology between the genes encoding TA system and secretion system proteins and the genes of plant-associated bacteria was over 60%. This may indicate that green algae are the main target for invasion. Detection of the urease synthesis genes in the genomes of lichen bacteriobionts suggested the hypothesis that urea decomposition results in an additional supply of ammonium and bicarbonate to the symbiosis. The latter may potentially be utilized by phototrophic eukaryotes and prokaryotes as an additional carbon source. Analysis of the genomes of lichen bacteriobionts L. ramalinae and L. minor revealed the possible differences in their survival strategies, with L. ramalinae more integrated into the symbiosis, while L. minor is characterized by more autonomous features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Alfano, J.R. and Collmer, C., Bacterial pathogens in plants: life up against the wall, Plant Cell, 1996, vol. 8, pp. 1683–1698. https://doi.org/10.1105/tpc.8.10.1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ansari, S. and Yamaoka, Y., Survival of Helicobacter pylori in gastric acidic territory, Helicobacter, 2017, vol. 22, art. https://doi.org/10.1111/hel.12386. 10.1111/hel.12386

  3. Basler, M., Ho, B.T., and Mekalanos, J.J., Tit-for-tat: type VI secretion system counterattack during bacterial cell‒cell interactions, Cell, 2013, vol. 152, pp. 884‒894. https://doi.org/10.1016/j.cell.2013.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Butt, A., Higman, V.A., Williams, C., Crump, M.P., Hemsley, C.M., Harmer, N., and Titball, R.W., The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation, Biochem. J., 2014, vol. 459, pp. 333–344. https://doi.org/10.1042/BJ20140073333

    Article  CAS  PubMed  Google Scholar 

  5. Cardinale, M., de Castro, J.V., Mueller, H., Berg, G., and Grube, M., In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria, FEMS Microbiol. Ecol., 2008, vol. 66, pp. 63–71. https://doi.org/10.1111/j.1574-6941.2008.00546.x

    Article  CAS  PubMed  Google Scholar 

  6. Clark, E.L., Karley, A.J., and Hubbard, S.F., Insect endosymbionts: manipulators of insect herbivore trophic interactions?, Protoplasma, 2010, vol. 244, pp. 25‒51. https://doi.org/10.1007/s00709-010-0156-2

    Article  PubMed  Google Scholar 

  7. Cox, G.M., Mukherjee, J., Cole, G.T., Casadevall, A., and Perfect, J.R., Urease as a virulence factor in experimental cryptococcosis, Infect Immun., 2000, vol. 68, pp. 443‒448. https://doi.org/10.1128/IAI.68.2.443-448.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Depluverez, S., Devos, S., and Devreese, B., The role of bacterial secretion systems in the virulence of gram-negative airway pathogens associated with cystic fibrosis, Front. Microbiol., 2016, vol. 7, art. 1336. https://doi.org/10.3389/fmicb.2016.01336

    Article  PubMed  PubMed Central  Google Scholar 

  9. d’Enfert, C., Ryter, A., and Pugsley, A.P., Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase, EMBO J., 1987, vol. 6, pp. 3531–3538.

    Article  Google Scholar 

  10. Erlacher, A., Cernava, T., Cardinale, M., Soh, J., Sensen, C.W., Grube, M., and Berg, G., Rhizobiales as functional and endosymbiotic members in the lichen symbiosis of Lobaria pulmonaria L., Front. Microbiol., 2015, vol. 6, art. 53. https://doi.org/10.3389/fmicb.2015.00053

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fraikin, N., Goormaghtigh, F., and Van Melderen, L., Type II toxin-antitoxin systems: evolution and revolutions, J. Bacteriol., 2020, vol. 202, e00763-19. https://doi.org/10.1128/JB.00763-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gallique, M., Bouteiller, M., and Merieau, A., The type VI secretion system: a dynamic system for bacterial communication?, Front. Microbiol., 2017, vol. 28, art. 1454. https://doi.org/10.3389/fmicb.2017.01454

    Article  Google Scholar 

  13. Gonzáles, I., Ayuso-Sacido, A., Anderson, A., and Genilloud, O., Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences, FEMS Microbiol. Ecol., 2005, vol. 54, pp. 401–415. https://doi.org/10.1016/j.femsec.2005.05.004

    Article  CAS  Google Scholar 

  14. Green, E.R. and Mecsas, J., Bacterial secretion systems: an overview, Microbiol. Spectr., 2021, vol. 4. https://doi.org/10.1128/microbiolspec.VMBF-0012-2015

  15. Grube, M. and Berg, G., Microbial consortia of bacteria and fungi with focus on the lichen symbiosis, Fungal Biol. Rev., 2009, vol. 23, pp. 72–85. https://doi.org/10.1016/j.fbr.2009.10.001

    Article  Google Scholar 

  16. Grube, M., Cardinale, M., de Castro, J., Müller, H., and Berg, G., Species-specific structural and functional diversity of bacterial communities in lichen symbioses, ISME J., 2009, vol. 3, pp. 1105–1115. https://doi.org/10.1038/ismej.2009.63

    Article  PubMed  Google Scholar 

  17. Guérout, A.-M., Iqbal, N., Mine, N., Ducos-Galand, M., Van Melderen, L., and Mazel, D., Characterization of the phd-doc and ccd toxin‒antitoxin cassettes from Vibrio superintegrons, J. Bacteriol., 2013, vol. 195, pp. 2270‒2283.

    Article  Google Scholar 

  18. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucl. Acids Symp., 1999, vol. 41, pp. 95‒98.

  19. Hayes, F., Toxins‒antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest, Science, 2003, vol. 301, pp. 1496–1499. https://doi.org/10.1126/science.1088157

    Article  CAS  PubMed  Google Scholar 

  20. Heaton, B.E., Herrou, J., Blackwell, A.E., Wysocki, V.H., and Crosson, S., Molecular structure and function of the novel BrnT/BrnA toxin‒antitoxin system of Brucella abortus, J. Biol. Chem., 2012, vol. 287, pp. 12098‒12110. https://doi.org/10.1074/jbc.M111.332163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hodkinson, B.P. and Lutzoni, F., A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales, Symbiosis, 2009, vol. 49, pp. 163–180. https://doi.org/10.1007/s13199-009-0049-3

    Article  CAS  Google Scholar 

  22. Hunter, J.D., Matplotlib: a 2D graphics environment, Comput. Sci. Eng., 2007, vol. 9, pp. 90–95. https://doi.org/10.1109/mcse.2007.55

    Article  Google Scholar 

  23. Jiang, D.-F., Wang, H.-Y., Si, H.-L., Zhao, L., Liu, C.-P., and Zhang, H., Isolation and culture of lichen bacteriobionts, The Lichenologist, 2017, vol. 49, pp. 175–181. https://doi.org/10.1017/S0024282917000044

    Article  Google Scholar 

  24. Jones, D.T., Taylor, W.R., and Thornton, J.M., The rapid generation of mutation data matrices from protein sequences, Bioinformatics, 1992, vol. 8, pp. 275–282.

    Article  CAS  Google Scholar 

  25. Korotkov, K., Sandkvist, M., and Hol, W., The type II secretion system: biogenesis, molecular architecture and mechanism, Nat. Rev. Microbiol., 2012, vol. 10, pp. 336–351. https://doi.org/10.1038/nrmicro2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., MEGA X: Molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evolut., 2018, vol. 35, pp. 1547‒1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  Google Scholar 

  27. Li, E., Hamm, C.M., Gulati, A.S., Sartor, R.B., Chen, H., Wu, X., Zhang, T., Rohlf, F.J., Zhu, W., Gu, C., Robertson, C.E., Pace, N.R., Boedeker, E.C., Harpaz, N., Yuan, J., et al., Inflammatory Bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition, PLoS One, 2012, vol. 7, e26284. https://doi.org/10.1371/journal.pone.0026284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mathews, S.L., Hannah, H., Samagaio, H., Martin, C., Rodriguez-Rassi, E., Matthysse, A.G., Glycoside hydrolase genes are required for virulence of Agrobacterium tumefaciens on Bryophyllum daigremontiana and tomato, Appl. Environ. Microbiol., 2019, vol. 85. e00603-19. https://doi.org/10.1128/AEM.00603-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Navarro-Garcia, F., Ruiz-Perez, F., Cataldi, Á., and Larzábal, M., Type VI secretion system in pathogenic Escherichia coli: structure, role in virulence, and acquisition, Front. Microbiol., 2019, vol. 10, art. 01965. https://doi.org/10.3389/fmicb.2019.01965

    Article  Google Scholar 

  30. Noh, H.J., Baek, K., Hwang, C.Y., Shin, S.C., Hong, S.G., and Lee, Y.M., Lichenihabitans psoromatis gen. nov., sp. nov., a member of a novel lineage (Lichenihabitantaceae fam. nov.) within the order of Rhizobiales isolated from Antarctic lichen, Int. J. Syst. Evol. Microbiol., 2019, vol. 69, pp. 3837‒3842. https://doi.org/10.1099/ijsem.0.003695

    Article  CAS  PubMed  Google Scholar 

  31. Nurhani, A.R.S., Abdul Munir, A.M., Mohd Wahid, S., and Farah Diba, A.B., A preliminary transcriptomic analysis of lichen Dirinaria sp., AIP Conf. Proc., 2013, vol. 1571, p. 258. https://doi.org/10.1063/1.4858665

    Article  CAS  Google Scholar 

  32. Okonechnikov, K., Golosova, O., Fursov, M., and the UGENE team, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 2012, vol. 28, pp. 1166–1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  33. Pankratov, T.A., Grouzdev, D.S., Patutina, E.O., Kolganova, T.V., Suzina, N.E., Berestovskaya, J.J., Lichenibacterium ramalinae gen. nov, sp. nov., Lichenibacterium minor sp. nov., the first endophytic, beta-carotene producing bacterial representatives from lichen thalli and the proposal of the new family Lichenibacteriaceae within the order Rhizobiales, Antonie van Leeuwenhoek, 2020, vol. 113, pp. 477‒489. https://doi.org/10.1007/s10482-019-01357-6

    Article  CAS  PubMed  Google Scholar 

  34. Pankratov, T.A., Kachalkin, A.V., Korchikov, E.S., and Dobrovol’skaya, T.G., Microbial communities of lichens, Microbiology (Moscow), 2017, vol. 86, pp. 293–309. https://doi.org/10.1134/S0026261717030134

    Article  CAS  Google Scholar 

  35. Pukatzki, S., Ma, A.T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W.C., Heidelberg, J.F., and Mekala-nos, J.J., Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 1528–1533. https://doi.org/10.1073/pnas.0510322103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pukatzki, S., McAuley, S.B., and Miyata, S.T., The type VI secretion system: translocation of effectors and effector-domains, Curr. Opin. Microbiol., 2009, vol. 12, pp. 11–17. https://doi.org/10.1016/j.mib.2008.11.010

    Article  CAS  PubMed  Google Scholar 

  37. Sana, T.G., Hachani, A., Bucior, I., Soscia, C., Garvis, S., Termine, E., Engel, J., Filloux, A., and Bleves, S., The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and fur and modulates internalization in epithelial cells, J. Biol. Chem., 2012, vol. 287, pp. 27095–27105. https://doi.org/10.1074/jbc.M112.376368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sandkvist, M., Type II secretion and pathogenesis, Infect. Immun., 2001, vol. 69, pp. 3523‒3535. https://doi.org/10.1128/IAI.69.6.3523-3535.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shavit, R., Lebendiker, M., Pasternak, Z., Burdman, S., and Helman, Y., The vapB–vapC operon of Acidovorax citrulli functions as a Bona-fide toxin–antitoxin module, Front. Microbiol., 2016, vol. 6, art. 1499. https://doi.org/10.3389/fmicb.2015.01499

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tatusov, R.L., Koonin, E.V., and Lipman, D.J., A genomic perspective on protein families, Science, 1997, vol. 278, pp. 631‒637. https://doi.org/10.1126/science.278.5338.631

    Article  CAS  PubMed  Google Scholar 

  41. Trifinopoulos, J., Nguyen, L.T., von Haeseler, A., and Minh, B.Q., W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis, Nucl. Acids Res., 2016, vol. 44, pp. 232‒235. https://doi.org/10.1093/nar/gkw256

    Article  CAS  Google Scholar 

  42. Ursula, W., Johnson, T.L., Chedid, Kh., Xi, Ch., Simmons, L.A., Mobley, H.L.T., and Sandkvist, M., Targeting the type II secretion system: development, optimization, and validation of a high-throughput screen for the identification of small molecule inhibitors, Front. Cell. Infect. Microbiol., 2017, vol. 7, art. 380. https://doi.org/10.3389/fcimb.2017.00380

    Article  CAS  Google Scholar 

  43. Van Rossum, G. and Drake, F.L., Python 3 Reference Manual, Scotts Valley, CA: CreateSpace, 2009.

    Google Scholar 

  44. Wicaksono, W.A., Cernava, T., Grube, M., and Berg, G., Assembly of bacterial genomes from the metagenomes of three lichen species, Microbiol. Resour. Announc., 2020, vol. 9, e00622-20. https://doi.org/10.1128/MRA.00622-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zulkower, V. and Rosser, S., DNA Features Viewer, a sequence annotations formatting and plotting library for Python, Bioinformatics, 2020, vol. 36, pp. 4350–4352. https://doi.org/10.1093/bioinformatics/btaa213

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-04-00297a); it was also supported in part by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Pankratov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankratov, T.A., Nikitin, P.A. & Patutina, E.O. Genome Analysis of Two Lichen Bacteriobionts, Lichenibacterium ramalinae and Lichenibacterium minor: Toxin‒Antitoxin Systems and Secretion Proteins. Microbiology 91, 160–172 (2022). https://doi.org/10.1134/S0026261722020096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722020096

Keywords:

Navigation