Skip to main content
Log in

Characterization of the Novel Plant Growth-Stimulating Strain Advenella kashmirensis IB-K1 and Evaluation of Its Efficiency in Saline Soil

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The strain of facultative chemolithotrophic bacteria isolated from soil within the aphotic zone of the Kinderlinskaya Cave (Southern Urals, Russia) was identified as member of the species Advenella kashmirensis based on its phenotypic characteristics and sequencing of its 16S rRNA gene fragment. The novel isolate was similar to the type strain A. kashmirensis WT 001 in its ability to utilize thiosulfate as an energy source and to grow in the presence of 7% NaCl. The strain A. kashmirensis IB-K1 actively solubilized poorly soluble organic and mineral phosphorous compounds in in vitro experiments (solubilization indexes for phytin and calcium orthophosphate were 7 and 5, respectively). Moreover, these bacterial cells exhibited high activity of alkaline and acid phosphatases. Scanning electron microscopy of 4-day-old wheat seedling roots revealed active colonization of their rhizoplane by A. kashmirensis IB-K1 in the root hairs zone. The main mechanism of plant growth-promoting effect caused by the strain IB-K1 is probably associated with its phosphate-mobilizing activity and indoleacetic acid (IAA) production (up to 220 ± 42 ng/mL). Presowing treatment of wheat (Triticum durum Desf.) seeds with A. kashmirensis strain IB-K1 significantly alleviated the adverse effect of salinity stress on plant growth under moderate salinization level of cultured soil (at content of water-soluble salts 0.33 ± 0.06%), resulting in improvement of some parameters of yield structure and increased plant productivity. These findings are the first demonstration of the possible application of Advenella species in agricultural crop protection and plant growth stimulation under salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Agrokhimicheskie metody issledovanii pochv (Agrochemical Methods in Soil Studies), Sokolov, A.V., Ed., Moscow: Nauka, 1975.

    Google Scholar 

  2. Alavi, P., Starcher, M., Zachow, C., Müller, H., and Berg, G., Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405T, Front. Plant Sci., 2013, vol. 4, art. 141, pp. 1–10. https://doi.org/10.3389/fpls.2013.00141

  3. Arkhipova, T.N., Kuzmina, L.Yu., and Kudoyarova, G.R., Hormone-producing and growth-stimulating microorganisms decrease the level of oxidative stress in wheat plants under high-salinity conditions, Biomika, 2018, vol. 10, pp. 365‒371. https://doi.org/10.31301/2221-6197.bmcs.2018-47

    Article  Google Scholar 

  4. Bunsangiam, S., Sakpuntoon, V., Srisuk, N., Ohashi, T., Fujiyama, K., and Limtong, S., Biosynthetic pathway of indole-3-acetic acid in Basidiomycetous yeast Rhodosporidiobolus fluvialis, Mycobiology, 2019, vol. 47, pp. 292–300. https://doi.org/10.1080/12298093.2019.1638672

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chervyatsova, O.Ya., Potapov, S.S., and Sadykov, S.A., Sulfur isotope composition of sulfate sediments karst caves of the Urals, Izv. Ural State Mining Univ., 2016, vol. 42, no. 2, pp. 32–36. https://doi.org/10.21440/2307-2091-2016-2-32-41

    Article  Google Scholar 

  6. Chu, T.N., Tran, H.B.T., Bui, L.V., and Hoang, M.T.T., Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana, BMC Res. Notes, 2019, vol. 12, art. 11, pp. 1–7. https://doi.org/10.1186/s13104-019-4046-1

  7. Coenye, T., Vanlaere, E., Samyn, E., Falsen, E., Larsson, P., and Vandamme, P., Advenella incenata gen. nov., sp. nov., a novel member of the Alcaligenaceae, isolated from various clinical samples, Int. J. Syst. Evol. Microb-iol., 2005, vol. 55, pp. 251–256. https://doi.org/10.1099/ijs.0.63267-0

    Article  CAS  Google Scholar 

  8. Dobrovol’skaya, T.G., Khusnetdinova, K.A., Manucharova, N.A., and Golovchenko, A.V., Structure of epiphytic bacterial communities of weeds, Microbiology (Moscow), 2017, vol. 86, pp. 257‒263. https://doi.org/10.1134/S0026261717020072

    Article  Google Scholar 

  9. Doronina, N.V., Torgonskaya, M.L., Fedorov, D.N., and Trotsenko, Yu.A., Aerobic methylobacteria as promising objects of modern biotechnology, Appl. Biochem. Microbio-l., 2015, vol. 51, pp. 125–134. https://doi.org/10.1134/S0003683815020052

    Article  CAS  Google Scholar 

  10. Dospekhov, B.A., Metodika polevogo opyta (Methodology of Field Experiment), Moscow: Agropromizdat, 1985.

  11. Egamberdieva, D., Davranov, K., Wirth, S., Hashem, A., and Abd_Allah, E.F., Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria, Saudi J. Biol. Sci., 2017, vol. 24, pp. 1601‒1608. https://doi.org/10.1016/j.sjbs.2017.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Emtsev, V.T., Sokolova, A.Y., and Selitskaya, O.V., Protective effect of Klebsiella bacteria on lawn grasses under conditions of soil salinization, Euras. Soil Sci., 2010, vol. 43, pp. 771‒776.

    Article  Google Scholar 

  13. Galbally, I.E. and Kirstine, W., The production of methanol by flowering plants and the global cycle of methanol, J. Atmosph. Chem., 2002, vol. 43, pp. 195–229. https://doi.org/10.1023/A:1020684815474

    Article  CAS  Google Scholar 

  14. Galimzyanova, N.F., Kuzmina, L.Yu., Kudoyarova, G.R., Vysotskaya, L.B., Arkhipova, T.N., Sidorova, L.V., Guvatova, Z.G., Ryabova, A.S., Ionina, V.I., Gabbasova, I.M., and Melent’ev, A.I., Effect of pre-sowing seed bacterization with phosphate-mobilizing and auxin-producing microorganisms on wheat productivity and mobility of soil phosphorus in the rhizosphere, Agrokhimiya, 2018, no. 4, pp. 50–58. https://doi.org/10.7868/S0002188118040075

  15. Gerhardt, P. and Am. Soc. Microbiol., Manual of Methods for General Bacteriology, Washington: Am. Soc. Microbiol., 1981.

  16. Ghosh, W., Bagchi, A., Mandal, S., Dam, B., and Roy, P., Tetrathiobacter kashmirensis gen. nov., sp. nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic betaproteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 1779–1787. https://doi.org/10.1099/ijs.0.63595-0

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh, W., George, A., Agarwal, A., Raj, P., Alam, M., Pyne, P., and Das Gupta, S.K., Whole-genome shotgun sequencing of the sulfur-oxidizing chemoautotroph Tetrathiobacter kashmirensis, J. Bacteriol., 2011, vol. 193, pp. 5553–5554. https://doi.org/10.1128/JB.05781-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gibello, A., Velo, A.I., Martin, M., Barra-Caracciolo, A., Grenni, P., and Fernandez-Garayzabal, J.F., Reclassification of the members of the genus Tetratiobacter Ghosh et al. 2005 to the genus Advenella Coenye et al. 2005, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 1914–1918. https://doi.org/10.1099/ijs.0.007443-0

    Article  CAS  PubMed  Google Scholar 

  19. Glickman, E. and Dessaux, Y., A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria, Appl. Environ. Microbiol., 1995, vol. 61, pp. 793‒796. https://doi.org/10.1128/aem.61.2.793-796.1995

    Article  Google Scholar 

  20. Goldstein, A.H. and Krishnaraj, P.U., Phosphate solubilizing microorganisms vs. phosphate mobilizing microorganisms: What separates a phenotype from a trait?, Developments in Plant and Soil Sciences, First International Meeting on Microbial Phosphate Solubilization, Velazquez, E. and Rodriguez-Barrueco, C., Eds., Dordrecht: Springer, 2007, vol. 102, pp. 203–213. https://doi.org/10.1007/978-1-4020-5765-6_31

  21. Hu, H., Tang, C., and Rengel, Z., Influence of phenolic acids on phosphorus mobilization in acidic and calcareous soils, Plant Soil, 2005, vol. 268, pp. 173–180. https://doi.org/10.1007/s11104-004-0280-x

    Article  CAS  Google Scholar 

  22. Jin, F., Ding, Y., Reddi, M.S., Dilantha Fernando, W.G., and Du, B., Genetic diversity and phylogeny of antagonistic bacteria against Phytophthora nicotianae isolated from tobacco rhizosphere, Int. J. Mol. Sci., 2011, vol. 12, pp. 3055–3071. https://doi.org/10.3390/ijms12053055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khan, A.A., Jilani, G., Akhtar, M.S., Naqvi, S.M.S., and Rasheed, M., Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production, J. Agric. Biol. Sci., 2009, vol. 1, pp. 48–58.

    Google Scholar 

  24. Kiryushin, V.I., Ekologicheskie osnovy zemledeliya (Ecological Principles of Agriculture), Moscow: Kolos, 1996.

  25. Lur’e, Yu.Yu., Unifitsirovannye metody analiza vod (Unified Methods of Water Analysis), Moscow: Khimiya, 1973.

  26. Matsuoka, M., Park, S., An, S.Y., Miyahara, M., Rim, S.M., Kamino, K., Fushinobu, S., Yokota, A., Wakagi, T., and Shoun, H., Advenella faeciporci sp. nov., a nitrite-denitritfying bacterium isolated from nitrifying-denitritfying activated sludge collected from a laboratory-scale bioreactor treating piggery wastewater, Int. J. Syst. Evol. Micro-biol., 2012, vol. 62, pp. 2986–2990. https://doi.org/10.1099/ijs.0.037440-0

    Article  CAS  Google Scholar 

  27. Moawad, M.E.P. and Vleck, P.L.G., Effect of phosphate solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere, Indones. J. Crop Sci., 1996, vol. 11, pp. 13–23.

    Google Scholar 

  28. Nassal, D., Spohn, M., Eltlbany, N., Jacquiod, S., Smalla, K., Marhan, S., and Kandeler, E., Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity, Plant Soil, 2018, vol. 427, pp. 17–37. https://doi.org/10.1007/s11104-017-3528-y

    Article  CAS  Google Scholar 

  29. Numan, M., Bashir, S., Khan, Y., Mumtaza, R., Shinwar, Z.K., Khan, A.L., Khan, A., and Al-Harrasi, A., Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review, Microbiol. Res., 2018, vol. 209, pp. 21–32. https://doi.org/10.1016/j.micres.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  30. Pan, J., Peng, F., Xue, X., You, Q., Zhang, W., Wang, T., and Huang, C., The growth promotion of two salt-tolerant plant groups with PGPR inoculation: a meta-analysis, Sustainability, 2019, vol. 11, art. 378, pp. 1–14. https://doi.org/10.3390/su11020378

  31. Poroshina, M.N., Doronina, N.V., Kaparullina, E.N., and Trotsenko, Iu.A., Advenella kashmirensis subsp. methylica PK1, a facultative methylotroph from carex rhizosphere, Microbiology (Moscow), 2015, vol. 84, pp. 73–79. https://doi.org/10.1134/S0026261715010117

    Article  CAS  Google Scholar 

  32. Prinsen, E., Costacurta, A., Michiels, K., Vanderleyden, J., and Van Onckelen, H., Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway, Mol. Plant Microbe Interact., 1993, vol. 6, pp. 609–615. https://doi.org/10.1094/MPMI-6-609

    Article  CAS  Google Scholar 

  33. Pyne, P., Alam, M., and Ghosh, W., A novel soxO gene, encoding a glutathione disulfide reductase, is essential for tetrathionate oxidation in Advenella kashmirensis, Microbio-l. Res., 2017, vol. 205, pp. 1–7. https://doi.org/10.1016/j.micres.2017.08.002

    Article  CAS  Google Scholar 

  34. Shahi, S.K., Rai, A.K., Tyagi, M.B., Sinha, R.P., and Kumar, A., Rhizosphere of rice plants harbor bacteria with multiple plant growth promoting features, Afr. J. Biotechn-ol., 2011, vol. 10, pp. 8296–8305. https://doi.org/10.5897/AJB11.602

    Article  CAS  Google Scholar 

  35. Singh, P., Kumar, V., and Agrawal, S., Evaluation of phytase producing bacteria for their plant growth promoting activities, Int. J. Microbiol., 2014, art. 426483, pp. 1–7. https://doi.org/10.1155/2014/426483

  36. Sugiyama, J., Kiyuna, T., Nishijima, M., An, K.-D., Nagatsuka, Y., Tazato, N., Handa, Y., Hata-Tomita, J., Sato, Y., Kigawa, R., and Sano, C., Polyphasic insights into the microbiomes of the Takamatsuzuka Tumulus and Kitora Tumulus, J. Gen. Appl. Microbiol., 2017, vol. 63, pp. 63–113. https://doi.org/10.2323/jgam.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  37. Sura-de Jong, M., Reynolds, R.J.B., Richterova, K., Musilova, L., Staicu, L.C., Chocholata, I., Cappa, J.J., Taghavi, S., van der Lelie, D., Frantik, T., Dolinova, I., Strejcek, M., Cochran, A.T., Lovecka, P., and Pilon-Smits, E.A.H., Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties, Front. Plant Sci., 2015, vol. 6, art. 113, pp. 1‒17. https://doi.org/10.3389/fpls.2015.00113

  38. Szegi, J., Talajmikrobiológiai vizsgálati módszerek (Methods of Soil Microbiology), Budapest, 1979.

  39. Veselov, S.Yu., Kudoyarova, G.R., Egutkin, N.L., Guili-Zade, V.Z., Mustafina, A.R., and Kof, E.M., Modified solvent partitioning scheme providing increased specificity and rapidity of immunoassay for indole 3-acetic acid, Physiol. Plant., 1992, vol. 86, pp. 93‒96. https://doi.org/10.1111/j.1399-3054.1992.tb01316.x

    Article  CAS  Google Scholar 

  40. Wang, H., Zhou, S., Wang, Y., Kong, D., Guo, X., Zhu, J., Dong, W., and Ruan, Z., Advenella alkanexedens sp. nov., an alkane-degrading bacterium isolated from biogas slurry samples, Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 906‒911. https://doi.org/10.1099/ijsem.0.000811

    Article  CAS  PubMed  Google Scholar 

  41. Wübbeler, J.H., Lütke-Eversloh, T., Van Trappen, S., Vandamme, P., and Steinbüchel, A., Tetratiobacter mimigardefordensis sp. nov., isolated from compost, a betaproteobacterium capable of utilizing the organic disulfide 3,3-dithiodipropionic acid, Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 1305‒1310. https://doi.org/10.1099/ijs.0.64126-0

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, P., Jin, T., Sahu, S.K., Xu, J., Shi, Q., Liu, H., and Wang, Y., The distribution of tryptophan-dependent indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis, Molecules, 2019, vol. 24, art. 1411, pp. 1–14. https://doi.org/10.3390/molecules24071411

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.I. Musabirov (Institute for Metals Superplasticity Problems, Russian Academy of Sciences, Ufa) for his assistance in conducting SEM studies.

Funding

This work was supported by the state budget of the Ministry of Education and Science of the Russian Federation, project no. AAAA-A18-118022190098-9 “Ecological and Genetic-Physiological Features of the Interaction of Species in Natural and Artificial Communities of Microorganisms,” as well as by the Russian Foundation for Basic Research, project no. 18-04-00577/18 “The Ability of Halotolerant Bacteria to Produce Phytohormones and Influence the Salt Tolerance of Plants.” The study was conducted using the equipment of the Agidel Center for Collective Use of the Ufa Federal Research Center, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Kuzmina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmina, L.Y., Gilvanova, E.A., Galimzyanova, N.F. et al. Characterization of the Novel Plant Growth-Stimulating Strain Advenella kashmirensis IB-K1 and Evaluation of Its Efficiency in Saline Soil. Microbiology 91, 173–183 (2022). https://doi.org/10.1134/S0026261722020072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722020072

Keywords:

Navigation