Skip to main content
Log in

Microorganisms in the Sediments of Lake Baikal, the Deepest and Oldest Lake in the World

  • REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The review summarizes the results of recent studies of microbial communities of the Lake Baikal sediments obtained using diverse techniques. In the sediments of the areas of stable sedimentation metabarcoding revealed predominance of members of the phyla Alpha- and Gammaproteobacteria (including Betaproteobacteriales), Bacteroidetes, Acidobacteria, Verrucomicrobia, and Thaumarchaeota, which are also common in other freshwater lakes. In the areas of discharge of gas-bearing mineralized fluids, the structure of microbial communities varied depending on the presence of electron acceptors and intensity and component composition of gas-bearing fluids responsible for microbial migration from the deep zone to the upper sediment layers and vice versa. Methanogenic archaea detected in Baikal sediments belonged to the groups capable of all four known catabolic pathways of methanogenesis: hydrogenotrophic, acetoclastic, methylotrophic, and hydrogen-dependent methylotrophic ones. Predominant members of the Baikal archaeal community, hydrogenotrophic methanogens of the family Methanoregulaceae (genera Methanoregula and Methano-sphaerula, as well as uncultured lineages), hydrogen-dependent methylotrophic archaea of the order Methanomassiliicoccales, and acetoclastic methanogens of the family Methanosaetaceae (genus Methanothrix (Methanosaeta)), were the same as in methanogenic communities of other freshwater lakes. Experimental evidence was obtained for anaerobic methane oxidation (AOM) via the nitrate- and nitrite-dependent pathways by archaea of the ANME-2d subcluster and bacteria of the phylum NC10. Structures of the 16S rRNA genes, mcrA, and pmoA exhibited high identity to those of the known freshwater organisms performing this process. Diversity of microbial communities at the sites of natural oil seepage differed at the order and family levels, as well as by the presence of alkane hydroxylases in the genes of the cultured species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Aloisi, G., Pogodaeva, T.V., Poort, J., Khabuev, A.V., Kazakov, A.V., Akhmanov, G.G., and Khlystov, O.M., Biogeochemical processes at the Krasniy Yar seepage area (Lake Baikal) and a comparison with oceanic seeps, Geo-Mar. Lett., 2019, vol. 39, pp. 59–75.

    Article  CAS  Google Scholar 

  2. Beal, E.J., House, C.H., and Orphan, V.J., Manganese- and iron-dependent marine methane oxidation, Science, 2009, vol. 325, pp. 184–187.

    Article  CAS  PubMed  Google Scholar 

  3. Bohrmann, G., Greinert, J., Suess, E., and Torres, M., Au-thigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability, Geology, 1998, vol. 26, p. 647.

    Article  CAS  Google Scholar 

  4. Borrel, G., Jézéquel, D., Biderre-Petit, C., Morel-Desrosiers, N., Morel, J.-P., Peyret, P., Fonty, G., and Lehours, A.-C., Production and consumption of methane in freshwater lake ecosystems, Res. Microbiol., 2011, vol. 162, pp. 832–847.

    Article  CAS  PubMed  Google Scholar 

  5. Borrel, G., Lehours, A.C., Crouzet, O., Jézéquel, D., Rockne, K. Kulczak, A., Duffaud, E., Joblin, K., and Fonty, G., Stratification of Archaea in the deep sediments of a freshwater meromictic lake: vertical shift from methanogenic to uncultured archaeal lineages, PLoS One, 2012, vol. 7. e43346. https://doi.org/10.1371/journal.pone.0043346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bukin, S.V., Pavlova, O.N., Kalmychkov, G.V., Iva-nov, V.G., Pogodaeva, T.V., Galachyants, Yu.P., Bukin, Yu.S., Khabuev, A.V., and Zemskaya, T.I., Substrate specificity of methanogenic communities from Lake Baikal bottom sediments associated with hydrocarbon gas discharge, Microbiology (Moscow), 2018, vol. 87, pp. 549–558.

    Article  CAS  Google Scholar 

  7. Bukin, S.V., Pavlova, O.N., Manakov, A.Y., Kostreva, E.A., Chernitsyna, S.M., Mamaeva, E.V., Pogodaeva, T.V., and Zemskaya, T.I., The ability of microbial community of Lake Baikal bottom sediments associated with gas discharge to carry out the transformation of organic matter under thermobaric conditions, Front. Microbiol., 2016, vol. 7, art. 690.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cabello-Yeves, P.J., Zemskaya, T.I., Zakharenko, A.S., Sakirko, M.V., Ivanov, V.G., Ghai, R., and Rodriguez-Valera, F., Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat, Limnol. Oceanogr., 2020, vol. 65, pp. 1471–1488.

    Article  CAS  Google Scholar 

  9. Cai, C., Leu, A.O., Xie, G.J., Guo, J., Feng, Y., Zhao, J.X., Tyson, G.W., Yuan, Z., and Hu, S., A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction, ISME J., 2018, vol. 12, pp. 1929–1939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Capone, D.G. and Kiene, R.P., Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism, Limnol. Oceanogr., 1988, vol. 33, pp. 725–749.

    CAS  Google Scholar 

  11. Chernitsyna, S.M., Mamaeva, E.V., Lomakina, A.V., Pogodaeva, T.V., Galach’yants, Yu.P., Bukin, S.V., Pimenov, N.V., Khlystov, O.M., and Zemskaya, T.I., Phylogenetic diversity of microbial communities of the Posolsk Bank bottom sediments, Lake Baikal, Microbiology (Moscow), 2016, vol. 85, pp. 672–680.

    Article  CAS  Google Scholar 

  12. Conrad, R. and Claus, P., Contribution of methanol to the production of methane and its 13C-isotopic signature in anoxic rice field soil, Biogeochem., 2005, vol. 73, pp. 381–393.

    Article  CAS  Google Scholar 

  13. Conrad, R., Chan, O.-C., Claus, P., and Casper, P., Characterization of methanogenic Archaea and stable isotope fractionation during methane production in the profundal sediment of an oligotrophic lake (Lake Stechlin, Germany), Limnol. Oceanogr., 2007, vol. 52, pp. 1393–1406.

    Article  CAS  Google Scholar 

  14. Dagurova, O.P., Namsaraev, B.B., Kozyreva, L.P., Zemskaya, T.I., and Dulov, L.E., Bacterial processes of the methane cycle in bottom sediments of Lake Baikal, Microbiology (Moscow), 2004, vol. 74, pp. 202–210.

    Article  Google Scholar 

  15. Dedysh, S.N., Derakshani, M., and Liesack, W., Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris, Appl. Environ. Microbiol., 2001, vol. 67, pp. 4850–4857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ding, H. and Valentine, D., Methanotrophic bacteria occupy benthic microbial mats in shallow marine hydrocarbon seeps, Coal Oil Point, California, J. Geophys. Res., 2008, vol. 113, G-1. https://doi.org/10.1029/2007jg000537

    Article  Google Scholar 

  17. Duc, N.T., Crill, P., and Bastviken, D., Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments, Biogeochem., 2010, vol. 100, pp. 185–196.

    Article  CAS  Google Scholar 

  18. Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H.J., van Alen, T., Luesken, F., Wu M.L., et al., Nitrite-driven anaerobic methane oxidation by oxygenic bacteria, Nature, 2010, vol. 464, pp. 543–548.

    Article  CAS  PubMed  Google Scholar 

  19. Evans, P.N., Parks, D.H., Chadwick, G.L., Robbins, S.J., Orphan, V.J., Golding, S.D., and Tyson, G.W., Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics, Science, 2015, vol. 350, pp. 434–438.

    Article  CAS  PubMed  Google Scholar 

  20. Fuchs, A., Lyautey, E., Montuelle, B., and Casper, P., Effects of increasing temperatures on methane concentrations and methanogenesis during experimental incubation of sediments from oligotrophic and mesotrophic lakes, J. Geophys. Res. Biogeosci., 2016, vol. 121, pp. 1394–1406.

    Article  CAS  Google Scholar 

  21. Fu, L., Li, S.W., Ding, Z.W., Ding, J., Lu, Y.Z., and Zeng, R.J., Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe(II), Water Res., 2016, vol. 88, pp. 808–815.

    Article  CAS  PubMed  Google Scholar 

  22. Gorshkov, A.G., Pavlova, O.N., Khlystov, O.M., and Zemskaya, T.I., Fractioning of petroleum hydrocarbons from seeped oil as a factor of purity preservation of water in Lake Baikal (Russia), J. Great Lakes Res., 2020, vol. 46, pp. 115–122.

    Article  CAS  Google Scholar 

  23. Granina, L., Muller, B., and Wehrli, B., Origin and dynamics of Fe and Mn sedimentary layers in Lake Baikal, Chem. Geol., 2004, vol. 205, pp. 55–72.

    Article  CAS  Google Scholar 

  24. Granina, L.Z., Rannii diagenez donnykh osadkov Baikala (Early Diagenesis in Lake Baikal Bottom Sediments, Novosibirsk: GEO, 2008. Gvozdkov, A.N., Geochemistry of the modern Lake Baikal sediments, Extended Abstract Cand. Sc. (Geol.-Min.) Dissertation, Irkutsk, 1998.

  25. Hachikubo, A., Khlystov, O., Krylov, A., Sakagami, H., Minami, H., Nunokawa, Y., Yamashita, S., Takahashi, N., Shoji, H., Nishio, S., Kida, M., Ebinuma, T., Kalmych-kov, G., and Poort, J., Molecular and isotopic characteristics of gas hydrate-bound hydrocarbons in southern and central Lake Baikal, Geo-Mar. Lett., 2010, vol. 30, pp. 321–329.

    Article  CAS  Google Scholar 

  26. Han, X., Schubert, C.J., Fiskal, A., Dubois, N., and Lever, M.A., Eutrophication as a driver of microbial community structure in lake sediments, Environ. Microbiol., 2020, vol. 22, pp. 3446–3462.

    Article  CAS  PubMed  Google Scholar 

  27. Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., and Tyson, G.W., Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage, Nature, 2013, vol. 500, pp. 567–570.

    Article  CAS  PubMed  Google Scholar 

  28. Hazen, T.C., Dubinsky, E.A., DeSantis, T.Z., Andersen, G.L., Piceno, Y.M., Singh, N., Jansson, J.K., Probst, A., Borglin, S.E., Fortney, J.L., Stringfellow, W.T., Bill, M., Conrad, M.E., Tom, L.M., Chavarria, K.L., et al., Deep-sea oil plume enriches indigenous oil-degrading bacteria, Science, 2010, vol. 330, pp. 204–208.

    Article  CAS  PubMed  Google Scholar 

  29. Huang, W., Chen, X., Wang, K., Chen, J., Zheng, B., and Jiang, X., Comparison among the microbial communities in the lake, lake wetland, and estuary sediments of a plain river network, Microbiol. Open, 2019, vol. 8. e644. https://doi.org/10.1002/mbo3.644

    Article  Google Scholar 

  30. Huber, H. and Stetter, K.O., Desulfurococcales, in The Prokaryotes, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E., Eds., New York: Springer, 2006, pp. 52–68.

    Google Scholar 

  31. Hu, S., Zeng, R.J., Burow, L.C., Lant, P., Keller, J., and Yuan, Z., Enrichment of denitrifying a anaerobic methane oxidizing microorganisms, Environ. Microbiol. Rep., 2009, vol. 1, pp. 377–384.

    Article  CAS  PubMed  Google Scholar 

  32. Hutchinson, D.R., Golmshtok, A.J., Zonenshain, L.P., Moore, T.C., Scholz, C.A., and Klitgord, K.D., Depositional and tectonic flamework of the rift basins of Lake Baikal from multichannel seismic data, Geology, 1992, vol. 20, pp. 589–592.

    Article  Google Scholar 

  33. Jeanbille, M., Gury, J., Duran, R., Tronczynski, J.K, Ghiglione, J.-F., Agogue, H., Said, O.B., Taib, N., Debroas, D., Garnier, C., and Auguet, J.-C., Chronic polyaromatic hydrocarbon (PAH) contamination is a marginal driver for community diversity and prokaryotic predicted functioning in coastal sediments, Front. Microbiol., 2016, vol. 7, art. 1303.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Johnson, J.M., Wawrik, B., Isom, C., Boling, W.B., and Callaghan, A.V., Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions, FEMS Microbiol. Ecol., 2015, vol. 91, no. 2, pp. 1–14.

    Article  PubMed  CAS  Google Scholar 

  35. Kadnikov, V.V., Lomakina, A.V., Likhoshvai, A.V., Gorshkov, A.G., Pogodaeva, T.V., Beletsky, A.V., Mardanov, A.V., Zemskaya, T.I., and Ravin, N.V., Composition of the microbial communities of bituminous constructions at natural oil seeps at the bottom of Lake Baikal, Microbiology (Moscow), 2013, vol. 82, pp. 373–382.

    Article  CAS  Google Scholar 

  36. Kadnikov, V.V., Mardanov, A., Beletsky, A.V, Shubenkova, O.V., Pogodaeva, T.N., Zemskaya, T.I., Ravin, N.V., and Skryabin, K.G., Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal, FEMS Microbiol Ecol., 2012, vol. 79, no. 1, pp. 348–358.

    Article  CAS  PubMed  Google Scholar 

  37. Kallistova, A.Y., Kevbrina, M.V., Pimenov, N.V., Rusanov, I.I., Rogozin, D.Y., Wehrli, B., and Nozhevnikova, A.N., Sulfate reduction and methanogenesis in the Shira and Shunet meromictic lakes (Khakasia, Russia), Microbiology (Moscow), 2006, vol. 75, pp. 720–726.

    Article  CAS  Google Scholar 

  38. Kalmychkov, G.V., Egorov, A.V., Kuz’min, M.I., and Kh-lystov, O.M., Genetic types of methane from Lake Baikal, Dokl. Earth Sci., 2006, vol. 411, pp. 1462–1465.

    Article  CAS  Google Scholar 

  39. King, G.M., Kostka, J.E., Hazen, T.C., and Sobecky, P.A., Microbial responses to the Deepwater Horizon Oil Spill: from coastal wetlands to the deep sea, Annu. Rev. Mar. Sci., 2015, vol. 7, pp. 377–401.

    Article  CAS  Google Scholar 

  40. Klerkx, J., Zemskaya, T.I., Matveeva, T.V., Khlystov, O.M., Namsaraev, B.B., Dagurova, O.P., Golobokova, L.P., Vorobyeva, S.S., Pogodaeva, T.P., Granin, N.G., Kalmychkov, G.V., Ponomarchuk, V.A., Shoji, H., Mazurenko, L.L., Kaulio, V.V., et al., Methane hydrates in surface layer of deep-water sediments in Lake Baikal, Dokl. Earth Sci., 2003, vol. 393, pp. 822–826.

    Google Scholar 

  41. Koizumi, Y., Takii, S., Nishino, M., and Nakajima, T., Vertical distributions of sulfate-reducing bacteria and methane-producing archaea quantified by oligonucleotide probe hybridization in the profundal sediment of a mesotrophic lake, FEMS Microbiol. Ecol., 2003, vol. 44, art. 101e108.

  42. Kolman, S.M., Kuptsov, V.M., Dzoins, G.A., and Karter, S.D., Radiocarbon dating of Lake Baikal sediments, Geol. Geofiz., 1993, vol. 34, nos. 10–11, pp. 68–77.

    Google Scholar 

  43. Kontorovich, A.E., Kashirtsev, V.A., Moskvin, V.I., Burshtein, L.M., Zemskaya, T.I., Kostyreva, E.A., Kalmychkov, G.V., and Khlystov, O.M., Petroleum potential of Baikal deposits, Russ. Geol. Geophys., 2007, vol. 12, pp. 1046–1053.

    Article  Google Scholar 

  44. Kotsyurbenko, O.R., Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems, FEMS Microbiol. Ecol., 2005, vol. 53, pp. 3–13.

    Article  CAS  PubMed  Google Scholar 

  45. Krylov, A.A., Hachikubo, A., Minami, H., Pogodae-va, T.V., Zemskaya, T.I. Krzhizhanovskaya, M.G., Poort, J., and Khlystov, O.M., Authigenic rhodochrosite from a gas hydrate-bearing structure in Lake Baikal, Int. J. Earth Sci., 2018, vol. 107, pp. 2011–2022.

    Article  CAS  Google Scholar 

  46. Kuz’min, M.I., Karananov, E.B., Kavai, T., et al., Deep-water drilling at Lake Baikal–main results, Geol. Geofiz., 2001, vol. 42, pp. 8–34.

    Google Scholar 

  47. Kuznetsov, A.P., Strizhov, V.P., Kuzin, V.S., Fialkov, V.A., and Yastrebov, V.S., News on Baikal nature. A community based on bacterial chemosynthesis, Izv. AM SSSR, Ser. Boil., 1991, no. 5, pp. 766–772.

  48. Kuznetsov, S.I., Mikroflora ozer i ee geokhimicheskaya deyatel’nost’ (Microflora of Lakes and Its Geochemical Activity), Leningrad: Nauka, 1970.

  49. Lever, M.A., Rogers, K.L., Lloyd, K.G., Overmann, J., Schink, B., Thauer, R.K., and Jørgensen, B.B., Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations, FEMS Microbiol. Rev., 2015, vol. 39, pp. 688–728.

    Article  CAS  PubMed  Google Scholar 

  50. Likhoshvay, A., Khanaeva, T., Gorshkov, A., Zemskaya, T., and Grachev, M., Do oil-degrading Rhodococci contribute to the genesis of deep water bitumen mounds in Lake Baikal?, Geomicrobiol. J., 2013, vol. 30, pp. 209–213.

    Article  Google Scholar 

  51. Likhoshvay, A., Lomakina, A., and Grachev, M., The complete alk sequences of Rhodococcus erythropolis from Lake Baikal, Springer Plus, 2014, vol. 3, art. 621.

    Article  PubMed  CAS  Google Scholar 

  52. Liu, Y. and Whitman, W.B., Metabolic, phylogenetic and ecological diversity of the methanogenic Archaea, Ann. N.Y. Acad. Sci., 2008, vol. 1125, pp. 171–189.

    Article  CAS  PubMed  Google Scholar 

  53. Liu, Y., Conrad, R., Yao, T., Gleixner, G., and Claus, P., Change of methane production pathway with sediment depth in a lake on the Tibetan plateau, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2017, vol. 474, pp. 279–286.

    Article  Google Scholar 

  54. Logachev, N.A., History and Geodynamics of the Baikal Rift, Geol. Geofiz., 2003, vol. 44, pp. 391–406.

    Google Scholar 

  55. Lomakina, A., Pogodaeva, T., Kalmychkov, G., Chernitsyna, S., and Zemskaya, T., Diversity of NC10 bacteria and ANME-2d archaea in sediments of fault zones at Lake Baikal, Diversity-Basel, 2020, vol. 12. https://doi.org/10.3390/d12010010

  56. Lomakina, A.V., Mamaeva, E.V., Galachyants, Y.P., Petrova, D.P., Pogodaeva, T.V., Shubenkova, O.V., Khabuev, A.V., Morozov, I.V., and Zemskaya, T.I., Diversity of Archaea in bottom sediments of the discharge areas with oil- and gas-bearing fluids in Lake Baikal, Geomicrobiol. J., 2018, vol. 35, pp. 50–63.

    Article  CAS  Google Scholar 

  57. Lomakina, A.V., Mamaeva, E.V., Pogodaeva, T.V., Kalmychkov, G.V., Khalzov, I.A., and Zemskaya, T.I., Anaerobic methane oxidation in enrichment cultures from deep sediments of a mud volcano Peschanka (South Baikal), Microbiology (Moscow), 2018, vol. 87, pp. 317–325.

    Article  CAS  Google Scholar 

  58. Lomakina, A.V., Pogodaeva, T.V., Morozov, I.V., and Zemskaya, T.I., Microbial communities of the discharge zone of oil- and gas-bearing fluids in low-mineral Lake Baikal, Microbiology (Moscow), 2014, vol. 83, pp. 278–287.

    Article  CAS  Google Scholar 

  59. Luff, R., Wallmann, K., and Aloisi, G., Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities, Earth Planet. Sci. Lett., 2004, vol. 221, pp. 337–353.

    Article  CAS  Google Scholar 

  60. Maksimova, E.A. and Maksimov, V.N., Mikrobiologiya vod Baikala (Mikrobiology of Baikal Water), Irkutsk: Irkutsk Gos. Univ., 1989.

  61. Mandic-Mulec, I., Gorenc, K., Petrišiš, M.G., Faganeli, J., and Ogrinc, N., Methanogenesis pathways in a stratified eutrophic alpine lake (Lake Bled, Slovenia), Limnol. Oceanogr., 2012, vol. 57, pp. 868–880.

    Article  CAS  Google Scholar 

  62. Mats, V.D., Ufimtsev, G.F., Mandel’baum, M.M., Alakshin, A.M., Pospeev, A.V., Shimaraev, M.N., and Khlystov, O.M., Kainozoi Baikal’skoi riftovoi vpadiny: stroenie i geologicheskaya istoriya (Baikal Rift Cenozoic of the Baikal Rift Depression: Structure and Geological History), Novosibirsk: Geo, 2001.

  63. Miettinen, H., Bomberg, M., Nyyssönen, M., Reunamo, A., Jørgensen, K.S., and Vikman, M., Oil degradation potential of microbial communities in water and sediment of Baltic Sea coastal area, PLoS One, 2019, vol. 17. e0218834. https://doi.org/10.1371/journal.pone.0218834

    Article  CAS  Google Scholar 

  64. Mikrobiologicheskoe nasledie XX veka (Microbiological Heritage of the 20th Century), Vinogradova, T.P. Ed., Irkutsk: Inst. Geogr. SO RAN, 2004.

    Google Scholar 

  65. Mikroorganizmy v ekosistemakh ozer i vodokhranilishch (Microorganisms in the Ecosystems of Lakes and Reservoirs), Dryukker, V.V., Ed., Novosibirsk: Nauka, 1985.

    Google Scholar 

  66. Minami, H., Pogodaeva, T., Sakagami, H., Hachikubo, A., Krylov, A., Harada, D., Saito, C., Tatsumi, K., Hyakuta-ke, K., Yamashita, S., Nishio, S., Takahashi, N., Shoji, H., Khlystov, O., Zemskaya, T., et al., Traces of original gas hydrate-forming fluid observed in subsurface gas hydrates retrieved from Lake Baikal, Russia, 10th Int. Conf. on Gas in Marine Sediments, Listvyanka, Russia, 2010, p. 129.

  67. Mizandrontsev, I.B., K geokhimii gruntovykh rastvorov (On the Geochemistry of Soil Solutions), Tr. LIN SO AN SSSR, 1975, vol. 21, no. 41, pp. 203–230.

    CAS  Google Scholar 

  68. Mizandrontsev, I.B., Osadkoobrazovanie (Sediment Formation), Tr. LIN SO AN SSSR, 1978, vol. 16, no. 36, pp. 33–46.

    Google Scholar 

  69. Mussmann, M., Brito, I., Pitcher, A., Sinninghe Damste, J.S., Hatzenpichler, R., Richter, A., Nielsen, J.L., Nielsen, P.H., Muller, A., Daims, H., Wagner, M., and Head, I.M., Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 16771–16776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nagata, T., Takai, K., Kawanobe, K., Kim, D.-S., Nakazato, R., Guselnikova, N., Bondarenko, N., Mologawaya, O., Kostornova, T., Drucker, V., Satoh, Y., and Watanabe, Y., Autotrophic picoplankton in southern Lake Baikal: abundance, growth and grazing mortality during summer, J. Plankton Res., 1994, vol. 16, pp. 945–959.

    Article  Google Scholar 

  71. Namsaraev, B.B. and Zemskaya, T.I., Mikrobiologicheskie protsessy krugovorota ugleroda v donnykh osadkakh ozera Baikal (Microbial Processes of the Carbon Cycle in Lake Baikal Bottom Sediments), Novosibirsk: Geo, 2000.

    Google Scholar 

  72. Newton, R.J., Jones, S.E., Eiler, A., McMahon, K.D., and Bertilsson, S., A guide to the natural history of freshwater lake bacteria, Microbiol. Mol. Biol. R., 2001, vol. 75, pp. 14–49.

    Article  CAS  Google Scholar 

  73. Norgi, K.A., Thamdrup, B., and Schubert, C.J., Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment, Limnol. Oceanogr., 2013, vol. 58, pp. 546–554.

    Article  CAS  Google Scholar 

  74. Nozhevnikova, A.N., Nekrasova, V., Ammann, A., Zehnder, A.J.B., Wehrli, B., and Holliger, C., Influence of temperature and high acetate concentrations on methanogenesis in lake sediment slurries, FEMS Microbiol. Ecol., 2007, vol. 62, pp. 336–344.

    Article  CAS  PubMed  Google Scholar 

  75. Och, L.M., Muller, B., Voegelin, A., Ulrich, A., Göttlicher, J., Steiniger, R., Mangold, S., Vologina, E., and Sturm, M., New insight into the formation and burial of Fe/Mn accumulations in Lake Baikal sediments, Chem. Geol., 2012, vol. 330–331, pp. 244–259.

    Article  CAS  Google Scholar 

  76. Pacheco-Oliver, M., McDonald, I., Groleau, D., Murrell, J.C., and Miguez, C., Detection of methanotrophs with highly divergent pmoA genes from Arctic soils, FEMS Microbiol. Lett., 2002, vol. 209, pp. 313–319.

    Article  CAS  PubMed  Google Scholar 

  77. Pannekens, M., Kroll, L., Müller, H., Mbow, F.T., and Meckenstock, R.U., Oil reservoirs, an exceptional habitat for microorganisms, New Biotechnol., 2019, vol. 49, pp. 1–9.

    Article  CAS  Google Scholar 

  78. Pasche, N., Schmid, M., Vazquez, F., Schubert, C J., Wüest, A., Kessler, J.D., Pack, M.A., Reeburgh, W.S., and Bürgmann, H., Methane sources and sinks in Lake Kivu, J. Geophys. Res., 2011, vol. 116, G03006.

    Google Scholar 

  79. Pavlova, O.N., Adamovich, S.N., Mirskova, A.N., and Zemskaya, T.I., RF Patent 2694593, 2019.

  80. Pavlova, O.N., Adamovich, S.N., Novikova, A.S., Gorshkov, A.G., Izosimova, O.N., Ushakov, I.A., Oborina, E.N., Mirskova, A.N., and Zemskaya, T.I., Protatranes, effective growth biostimulants of hydrocarbon-oxidizing bacteria from Lake Baikal, Russia, Biotechnol. Rep., 2019, vol. 24, e00371.

    Article  Google Scholar 

  81. Pavlova, O.N., Bukin, S.V., Lomakina, A.V., Kalmychkov, G.V., Ivanov, V.G., Morozov, I.V., Pogodaeva, T.V., Pimenov, N.V., and Zemskaya, T.I., Production of gaseous hydrocarbons by microbial communities of Lake Baikal bottom sediments, Microbiology (Moscow), 2014, vol. 83, pp. 798–804.

    Article  CAS  Google Scholar 

  82. Pavlova, O.N., Izosimova, O.N., Chernitsyna, S.M., Ivanov, V.G., Pogodaeva, T.V., and Gorchkov, A.G., Process of anaerobic oxidation of oil in bottom sediments of Lake Baikal, Limnol. Freshwater Biol., 2020, no. 3, pp. 1006–1007.

  83. Pavlova, O.N., Izosimova, O.N., Gorshkov, A.G., Novikova, A.S., Bukin, S.V., Ivanov, V.G., Khlystov, O.M., and Zemskaya, T.I., Current state of deep oil seepage near cape Gorevoi Utes (Central Baikal), Russ. Geol. Geophys., 2020, vol. 61, pp. 1007–1014.

    Article  Google Scholar 

  84. Petrova, V.I. and Mamontova, L.M., Changes in bacterial abundance in experiments with oil addition, in Mikroorganizmy v ekosistemakh ozer i vodokhranilishch (Microorganisms in the Ecosystems of Lakes and Reservoirs), Novosibirsk: Nauka, pp. 144–150.

  85. Pimenov, N.V., Zakharova, E.E., Bryukhanov, A.L., Korneeva, V.A., Kuznetsov, B.B., Tourova, T.P., Pogodaeva, T.V., Kalmychkov, G.V., and Zemskaya, T.I., Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal, Microbiology (Moscow), 2014, vol. 83, pp. 47–55.

    Article  CAS  Google Scholar 

  86. Pogodaeva, T.V., Lopatina, I.N., Khlystov, O.M., Egorov, A.V., and Zemskaya, T.I., Background composition of pore waters in Lake Baikal bottom sediments, J. Great Lake Res., 2017, vol. 43, pp. 1030–1043.

    Article  CAS  Google Scholar 

  87. Pogodaeva, T.V., Poort, J., Aloisi, G., Bataillard, L., Makarov, M.M., Khabuev, A.V., Kazakov, A.V., Chensky, A.G., and Khlystov, O.M., Fluid migrations at the Krasny Yar methane seep of Lake Baikal according to geochemical data, J. Great Lakes Res., 2020, vol. 46, pp. 123–131.

    Article  CAS  Google Scholar 

  88. Pogodaeva, T.V., Zemskaya, T.I., Golobokova, L.P., Khlystov, O.M., Minami, Kh., and Sakagami, Kh., Pore water chemical composition in the bottom sediments from different Lake Baikal regions, Geol. Geofiz., 2007, vol. 48, pp. 1144–1160.

    CAS  Google Scholar 

  89. Pujalte, M.J., Lucena, T., Ruvira, M.A., Arahal, D.R., and Macian, M.C., The family Rhodobacteraceae, in The Prokaryotes: Alphaproteobacteria and Betaproteobacteria, Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., and Thompson, F., Eds., Berlin: Springer, 2014, pp. 439–512.

    Google Scholar 

  90. Qiu, L., Williams, D.F., Gvorzdkov, A., Karabanov, E., and Shimaraeva, M., Biogenic silica accumulation and paleoproductivity in the northern basin of Lake Baikal during the Holocene, Geology, 1993, vol. 21, pp. 25–28.

    Article  CAS  Google Scholar 

  91. Raghoebarsing, A.A., Pol, A., van de Pas-Schoonen, K.T., Smolders, A.J., Ettwig, K.F., Rijpstra, W.I., Schouten, S., Damsté, J.S.S., Op den Camp, J.M., Jetten, M.S., and Strous, M., A microbial consortium couples anaerobic methane oxidation to denitrification, Nature, 2006, vol. 440, pp. 918–921.

    Article  CAS  PubMed  Google Scholar 

  92. Rissanen, A.J., Peura, S., Mpamah, P.A., Taipale, S., Tiirola, M., Biasi, C., Maki, A., and Nykanen, H., Vertical stratication of bacteria and archaea in sediments of a small boreal humic lake, FEMS Microbiol. Lett., 2019, vol. 366, no. 5, fnz044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schubert, C.J., Vazquez, F., Losekann-Behrens, T., Knittel, K., Tonolla, M., and Boetius, A., Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno), FEMS Microbiol. Ecol., 2011, vol. 76, pp. 26–38.

    Article  CAS  PubMed  Google Scholar 

  94. Schulz, S. and Conrad, R., Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance, FEMS Microbiol. Ecol., 1996, vol. 20, pp. 1–14.

    Article  CAS  Google Scholar 

  95. Shen, L., Ouyang, L., Zhu, Y., and Trimmer, M., Active pathways of anaerobic methane oxidation across contrasting riverbeds, ISME J., 2019, vol. 13, pp. 752–766.

    Article  CAS  PubMed  Google Scholar 

  96. Shubenkova, O.V., Zemskaya, T.I., Chernitsyna, S.M., Khlystov, O.M., and Triboi, T.I., The first results of an investigation into the phylogenetic diversity of microorganisms in southern Baikal sediments in the region of subsurface discharge of methane hydrates, Microbiology (Moscow), 2005, vol. 74, pp. 314–320.

    Article  CAS  Google Scholar 

  97. Sierra-Garcia, I.N., Dellagnezze, B.M., Santos, V.P., Chaves, M.R., Capilla, R., Neto, S., Gray, N., and Oliveira, V.M., Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales, Extremophiles, 2017, vol. 21, pp. 211–229.

    Article  CAS  PubMed  Google Scholar 

  98. Simoneit, B.R.T., Aboul-Kassim, T.A.T., and Tiercelin, J.J., Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift, Appl. Geochem., 2000, vol. 15, pp. 355–368.

    Article  CAS  PubMed  Google Scholar 

  99. Sitnikova, T.Ya., Sideleva, V.G., Kiyashko, S.I., Zemskaya, T.I., Mekhanikova, I.V., Khlystov, O.M., and Khal’zov, I.A., Comparative analysis of macroinvertebrates and fish communities associated with methane and oil-methane seeps in Lake Baikal abyssal zone, Usp. Sovr. Biol., 2017, vol. 137, pp. 373–386.

    Google Scholar 

  100. Söllinger, A. and Urich, T., Methylotrophic methanogens everywhere—physiology and ecology of novel players in global methane cycling, Biochem. Soc. Trans., 2019, vol. 47, pp. 1895–1907.

    Article  PubMed  Google Scholar 

  101. Spang, A., Poehlein, A., Offre, P., Zumbragel, S., Haider, S., Rychlik, N., Nowka, B., Schmeisser, C., Lebedeva, E.V., Rattei, T., Böhm, C., Schmid, M., Galushko, A., Hatzenpichler, R., Weinmaier, T., et al., The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: Insights into metabolic versatility and environmental adaptations, Environ. Microbiol., 2012, vol. 14, pp. 3122–3145.

    Article  CAS  PubMed  Google Scholar 

  102. Starnawski, P., Bataillon, T., Ettema, T.J.G., Jochum, L.M., Schreiber, L., Chen, X., Lever, M.A., Polz, M.F., Jørgensen, B.B., Schramm, A., and Kjeldsen, K.U., Microbial community assembly and evolution in subseafoor sediment, Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, pp. 2940–2945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sun, L.W., Toyonaga, M., Ohashi, A., Tourlousse, D.M., Matsuura, N., Meng, X.Y., Tamaki, H., Hanada, S., Cruz, R., Yamaguchi, T., and Sekiguchi, Y., Lentimicrobium saccharophilum gen. nov., sp nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov., Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 2635–2642.

    Article  CAS  PubMed  Google Scholar 

  104. Taliev, S.D., Kozhova, O.M., and Molozhavaya, O.A., Hydrocarbon-oxidizing microorganisms in biocenoses of some Lake Baikal regions, in Mikroorganizmy v ekosistemakh ozer i vodokhranilishch (Microorganisms in the Ecosystems of Lakes and Reservoirs), Novosibirsk: Nauka, 1985, pp. 64–74.

  105. Thauer, R.K., Kaster, A.K., Seedorf, H., Buckel, W., and  edderich, R., Methanogenic archaea: ecologically relevant differences in energy conservation, Nat. Rev. Microbiol., 2008, vol. 6, pp. 579–591.

    Article  CAS  PubMed  Google Scholar 

  106. Timmers, P.H., Welte, C.U., Koehorst, J.J., Plugge, C.M., Jetten, M.S., and Stams, A.J., Reverse methanogenesis and respiration in methanotrophic archaea, Archaea, 2017, vol. 2017, 1654237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Torres, N.T., Och, L.M., Hauser, P.C., Furrer, G., Brandl, H., Vologina, E., Sturm, M., Bürgmann, H., and Müller, B., Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia, Environ. Sci., 2014, vol. 16, pp. 879–889.

    CAS  Google Scholar 

  108. Vanwonterghem, I., Evans, P.N., Parks, D.H., Jensen, P.D., Woodcroft, B.J., Hugenholtz, P., and Tyson, G.W., Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota, Nature Microbiol., 2016, vol. 1, p. 16170.

    Article  CAS  Google Scholar 

  109. Vologina, E.G. and Sturm, M., Particulate fluxes in South Baikal: evidence from sediment trap experiments, Russ. Geol. Geophys., 2017, vol. 58, pp. 1045–1052.

    Article  Google Scholar 

  110. Vologina, E.G., Sturm, M., Vorobyova, S.S., and Granina, L.Z., New results of high-resolution studies of surface sediments of Lake Baikal, Terra Nostra, 2000, no. 9, pp. 115–131.

  111. Votintsev, K.K., Meshcheryakova, A.I., and Popovskaya, G.I., Krugovorot organicheskogo veshchestva v ozere Baikal (Organic Matter Turnover in Lake Baikal), Novosibirsk: Nauka, 1975.

  112. Vykhristyuk, L.A., Organic matter in Lake Baikal bottom sediments, in Trudy LIN SO AN SSSR, Novosibirsk: Nauka, 1980, vol. 32, p. 80.

    Google Scholar 

  113. Walker, C.B., de la Torrea, J.R., Klotz, M.G., Urakawa, H., Pinel, N., Arp, D.J., Brochier-Armanet, C., Chain, P.S., Chan, P.P., Gollabgir, A., Hemp, J., Hugler, M., Karr, E.A., Konneke, M., Shin, M., et al., Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 8818–8823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wand, U., Samarkin, V.A., Nitzsche, H.-M., and Hubberten, H.-W., Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, East Antarctica, Limnol. Oceanogr., 2006, vol. 51, pp. 1180–1194.

    Article  CAS  Google Scholar 

  115. Weber, H.S., Habicht, K.S., and Thamdrup, B., Anaerobic methanotrophic archaea of the ANME-2d cluster are active in a low-sulfate, iron-rich freshwater sediment, Front. Microbiol., 2017, vol. 8, p. 619.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Welte, C.U., Rasigraf, O., Vaksmaa, A., Versantvoort, W., Arshad, A., Op den Camp, H.J., Jetten, M.S., Lüke, C., and Reimann, J., Nitrate- and nitrite-dependent anaerobic oxidation of methane, Environ. Microbiol. Rep., 2016, vol. 8, p. 941.

    Article  CAS  PubMed  Google Scholar 

  117. Wen, X., Yang, S.Z., Horn, F., Winkel, M., Wagner, D., and Liebner, S., Global biogeographic analysis of methanogenic Archaea identifies community-shaping environmental factors of natural environments, Front. Microbiol., 2017, vol. 8, art. 1339.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wurzbacher, C., Nilsson, R.H, Rautio, M., and Peura, S., Poorly known microbial taxa dominate the microbiome of permafrost thaw ponds, ISME J., 2017, vol. 11, pp. 1938–1941.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Yanagawa, K., Shiraishi, F., Tanigawa, Y., Maeda, T., Mustapha, N.A., Owari, S., Tomaru, H., Matsumoto, R., and Kano, A., Endolithic microbial habitats hosted in carbonate nodules currently forming within sediment at a high methane flux site in the Sea of Japan, Geosciences, 2019, vol. 9, p. 463.

    Article  CAS  Google Scholar 

  120. Yang, Y., Chen, J., Tong, T., Xie, S., and Liu, Y., Influences of eutrophication on methanogenesis pathways and methanogenic microbial community structures in freshwater lakes, Environ. Pollut., 2020, vol. 260, art. 114106.

    Article  CAS  PubMed  Google Scholar 

  121. Yoon, J., Matsuo, Y., Katsuta, A., Jang, J.H., Matsuda, S., Adachi, K., Kasai, H., and Yokota, A., Haloferula rosea gen. nov., sp. nov., Haloferula harenae, sp. nov., Haloferula phyci sp. nov., Haloferula helveola sp. nov and Haloferula sargassicola sp. nov., five marine representatives of the family Verrucomicrobiaceae within the phylum “Verrucomicrobia,Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 2491–2500.

    Article  CAS  PubMed  Google Scholar 

  122. Zakharova, Y.R., Parfenova, V.V., Granina, L.Z., Kravchenko, O.S., and Zemskaya, T.I., Distribution of iron- and manganese-oxidizing bacteria in the bottom sediments of Lake Baikal, Inland Water Biol., 2010, vol. 3, pp. 313–321.

    Article  Google Scholar 

  123. Zakharova, Y.R., Petrova, D.P., Galachyants, Y.P., Bashenkhaeva, M.Y., Kurilkina, M.I., and Likhosh-way, Y.V., Bacterial and archaeal community structure in the surface diatom sediments of deep freshwater Lake Baikal (Eastern Siberia), Geomicrobiol. J., 2018, vol. 35, pp. 635–647.

    Article  Google Scholar 

  124. Zarate-del Valle, P.F., Rushdi, A.I., and Simoneit, B.R.T., Hydrothermal petroleum of Lake Chapala, Citala Rift, western Mexico: bitumen compositions from source sediments and application of hydrous pyrolysis, Appl. Geochem., 2006, vol. 21, pp. 701–712.

    Article  CAS  Google Scholar 

  125. Zavarzin, G.A., Formation of the system of biogeochemical cycles, Paleontol. J., 2003, vol. 37, pp. 576–583.

    Google Scholar 

  126. Zemskaya, T.I., Lomakina, A.V., Mamaeva, E.V., Zakharenko, A.S., Likhoshvai, A.V., Galachyants, Yu.P., and Miller, B., Composition of microbial communities in sediments from southern Baikal containing Fe/Mn concretions, Microbiology (Moscow), 2018, vol. 87, pp. 382–392.

    Article  CAS  Google Scholar 

  127. Zemskaya, T.I., Lomakina, A.V., Mamaeva, E.V., Zakharenko, A.S., Pogodaeva, T.V., Petrova, D.P., and Galachyants, Yu.P., Bacterial communities in sediments of Lake Baikal from areas with oil and gas discharge, Aquat. Microbiol. Ecol., 2015a, vol. 75, pp. 95–109.

    Article  Google Scholar 

  128. Zemskaya, T.I., Lomakina, A.V., Shubenkova, O.V., Pogodaeva, T.V., Morozov, I.V., Chernitsina, S.M., Sitnikova, T.Ya., Khlystov, O.M., and Egorov, A.V., Jelly-like microbial mats over subsurface fields of gas hydrates at the St. Petersburg methane Seep (Central Baikal), Geomicrobiol. J., 2015b, vol. 32, pp. 89–100.

    Article  CAS  Google Scholar 

  129. Zemskaya, T.I., Namsaraev, B.B., Dul’tseva, N.M., Khanaeva, T.A., Golobokova, L.P., Dubinina, G.A., Dulov, L.E., and Wada, E., Ecophysiological characteristics of the mat-forming bacterium Thioploca in bottom sediments of the Frolikha Bay, Northern Baikal, Microbiology (Moscow), 2001, vol. 70, pp. 335–341.

    Article  CAS  Google Scholar 

  130. Zemskaya, T.I., Sitnikova, T.Y., Kiyashko, S.I., Kalmychkov, G.V., Pogodaeva, T.V., Mekhanikova, I.V., Naumova, T.V., Shubenkova, O.V., Chernitsina, S.M., Kotsar, O.V., Chernyaev, E.S., and Khlystov, O.M., Faunal communities at sites of gas- and oil-bearing fluids in Lake Baikal, Geo-Mar. Lett., 2012, vol. 32, pp. 437–451.

    Article  Google Scholar 

  131. Zhu, G., Jetten, M.S.M., Kuschk, P., Ettwig, K.F., and Yin, C., Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems, Appl. Microbiol. Biotechnol., 2010, vol. 86, pp. 1043–1055.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the government contract (project no. 0279-2021-0006 “Investigation of Formation of Hydrate, Oil, and Gaseous Hydrocarbon Systems…” and the Russian Foundation for Basic Research (project no. 18-04-00244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Zemskaya.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Panyushkina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemskaya, T.I., Bukin, S.V., Lomakina, A.V. et al. Microorganisms in the Sediments of Lake Baikal, the Deepest and Oldest Lake in the World. Microbiology 90, 298–313 (2021). https://doi.org/10.1134/S0026261721030140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721030140

Keywords:

Navigation