Skip to main content
Log in

Cell Wall Rhamnan in Actinobacteria of the Genus Curtobacterium

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Presence of the cell wall glycopolymer rhamnan was established for members of the genus Curtobacterium (family Microbacteriaceae) by using chemical and NMR spectroscopic methods. The rhamnan with the repeating unit, →2)-α-L-Rhap-(1→3)-α-L-Rhap-(1→, was found in C. flaccumfaciens pv. flaccumfaciens VKM Ас-1923T, C. flaccumfaciens pv. poinsettiae VKM Ас-1924T, C. pusillum VKM Ac-2099T, C. herbarum VKM Ac-2512T, and Curtobacterium sp. VKM Ac-1811. Each of the studied strains also contained a second, acidic phosphate-free polysaccharide. NMR spectra of these polysaccharides differed, indicating the structural differences. Cell wall hydrolysates of all studied strains were found to contain rhamnose, mannose, glucose, galactose, and glucosamine. Further research will facilitate more detailed characterization of the composition of cell wall glycopolymers in Curtobacterium species, as well as evaluation of their taxonomic significance. The data on the polymer structure will contribute to understanding of the mechanisms of colonization and infection of higher organisms by Curtobacterium species and bacterial interaction in microbial communities and with abiotic environmental objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aizawa, T., Ve, N.B., Kimoto, K.I., Iwabuchi, N., Sumida, H., Hasegawa, I., Sasaki, S., Tamura, T., Kudo, T., Suzuki, K.I., Nakajima, M., and Sunairi, M., Curtobacterium ammoniigenes sp. nov., an ammonia-producing bacterium isolated from plants inhabiting acidic swamps in actual acid sulfate soil areas of Vietnam, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 1447–1452.

    Article  CAS  Google Scholar 

  2. Caliot, E., Dramsi, S., Chapot-Chartier, M.P., Courtin, P., Kulakauskas, S., Pechoux, C., Trieu-Cuot, P., and Mistou, M.Y., Role of the Group B antigen of Streptococcus agalactiae: a peptidoglycan-anchored polysaccharide involved in cell wall biogenesis, PLoS Pathog., 2012, vol. 8. e1002756.

    Article  CAS  Google Scholar 

  3. Chase, A.B., Arevalo, P., Polz, M.F., Berlemont, R., and Martiny, J.B., Evidence for ecological flexibility in the cosmopolitan genus Curtobacterium, Front. Microbiol., 2016, vol. 7, p. 1874.

    Article  Google Scholar 

  4. Clifford, J.C., Rapicavoli, J.N., and Roper, M.C., A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa, Mol. Plant Microbe Interact., 2013, vol. 26, pp. 676–685.

    Article  CAS  Google Scholar 

  5. Diaz-Maurino, T. and Perkins, H.R., The presence of acidic polysaccharides and muramic acid phosphate in the walls of Corynebacterium poinsettiae and Corynebacterium betae, J. Gen. Microbiol., 1974, vol. 80, pp. 533–539.

    Article  CAS  Google Scholar 

  6. Evtushenko, L.I. and Takeuchi, M., Family Microbacteriaceae, in The Prokaryotes, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. N.Y.: Springer Science, 2006, 3rd ed., pp. 1020–1098.

  7. Francis, M.J., Doherty, R.R., Patel, M., Hamblin, J.F., Ojaimi, S., and Korman, T.M., Curtobacterium flaccumfaciens septic arthritis following puncture with a Coxspur Hawthorn thorn, J. Clin. Microbiol., 2011, vol. 49, pp. 2759–2760.

    Article  Google Scholar 

  8. Funke, G., Aravena-Roman, M., and Frodl, R., First description of Curtobacterium spp. isolated from human clinical specimens, J. Clin. Microbiol., 2005, vol. 43, pp. 1032–1036.

    Article  CAS  Google Scholar 

  9. Iizuka, H. and Komagata, K., Microbiological studies on petroleum and natural gas. III. Determination of Brevibacterium, Arthrobacter, Micrococcus, Sarcina, Alcaligenes, and Achromobacter isolated from oil-brines in Japan, J. Gen. A-ppl. Microbiol., 1965, vol. 11, pp. 1–14.

    Article  Google Scholar 

  10. Kim, D., Tul’skaya, E.M., Dmitrenok, A.S., Starodumova, I.P., and Dorofeeva, L.V., Comparative study of two Clavibacter strains, in Mikrobiologiya: voprosy ekologii, fiziologii, biotechnologii (Microbiology: Issues of Ecology, Physiology, and Biotechnology, All-Russ. Conf. Int. Particip.), Moscow: Maks-Press, 2019, p. 58.

    Google Scholar 

  11. Kohler, T., Xia, G., Kulauzovic, E., and Peschel, A., Teichoic acids, lipoteichoic acids, and related cell wall glycopolymers of Gram-positive bacteria, in Microbial Glycobiology: Structures, Relevance and Applications, Moran, A., Holst, O., Brennan, P.J., and von Itzstein, M., Eds., Amsterdam: Elsevier, 2009, Ch. 5, pp. 75–91.

    Google Scholar 

  12. Messner, P. and Schaffer, C., Prokaryotic glycoproteins, in Progress in the Chemistry of Organic Natural Products (Fortschritte der Chemie organischer Naturstoffe), Chakraborty, D.P., Krohn, K., Messner, P., Roy, S., and Schaffer, C., Eds., Vienna: Springer, 2003, vol. 85, pp. 51–124.

    Google Scholar 

  13. Michael, V., Frank, O., Bartling, P., Scheuner, C., Goker, M., Brinkmann, H., and Petersen, J., Biofilm plasmids with a rhamnose operon are widely distributed determinants of the “swim-or-stick” lifestyle in roseobacters, ISME J., 2016, vol. 10, pp. 2498–2513.

    Article  CAS  Google Scholar 

  14. Mistou, M.Y., Sutcliffe, I.C., and van Sorge, N.M., Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in gram-positive bacteria, FEMS Microbiol. Rev., 2016, vol. 40, pp. 464–479.

    Article  CAS  Google Scholar 

  15. Naumova, I.B. and Shashkov, A.S., Anionic polymers in cell walls of gram-positive bacteria, Biochemistry (Moscow), 1997, vol. 62, pp. 809–840.

    CAS  PubMed  Google Scholar 

  16. Potekhina, N.V., Streshinskaya, G.M., Tul’skaya, E.M., and Shashkov, A.S., Cell wall teichoic acids in the taxonomy and characterization of gram-positive bacteria, in Taxonomy of Prokaryotes Methods in Microbiology, Rainey, F.A. and Oren, A., Eds., Amsterdam: Academic/Elsevier, 2011, vol. 38, Ch. 6, pp. 131–164.

    Book  Google Scholar 

  17. Rautenberg, M., Kohler, T., Xia, G., Kulauzovic, E., and Peschel, A., Structure, biosynthesis, and function of teichoic acids and related cell wall glycopolymers in the Gram-positive cell envelope, in Prokaryotic Cell Wall Compounds, Konig, H., Claus, H., and Varma, A., Eds., Berlin: Springer, 2010, pp. 155–174.

    Google Scholar 

  18. Rivera, R., Cheema, A., Mai, J., Oehler, R.L., Sandin, R.L., and Greene, J.N., Curtobacterium brain abscess: case report, Infect. Dis. Clin. Pract., 2012, vol. 20, pp. e17–e19.

    Article  Google Scholar 

  19. Saddler, G.S., Guimaraes, P.M., Hamada, M., and Suzuki, K.I., Curtobacterium, in Bergey’s Manual of Systematics of Archaea and Bacteria, DeVos, P., Dedysh, S., Hedlund, B., Kampfer, P., Rainey, F., Trujillo, M.E., Bowman, J.P., Brown, D.R., Glockner, F.O., Oren, A., Paster, B.J., Wade, W., Ward, N., Busse, H.J., and Reysenbach, A.L., Eds., Wiley, 2017, version 2, pp. 1–16.

  20. Sadovskaya, I., Vinogradov, E., Courtin, P., Armalyte, J., Meyrand, M., Giaouris, E., Palussiere, S., Furlan, S., Pechoux, C., Ainsworth, S., Mahony, J., van Sinderen, D., Kulakauskas, S., Guerardel, Y., and Chapot-Chartier, M.P., Another brick in the wall: a rhamnan polysaccharide trapped inside peptidoglycan of Lactococcus lactis, mBio, 2017, vol. 8. e01303-17.

    Article  CAS  Google Scholar 

  21. Sanyika, T.W., Stafford, W., and Cowan, D.A., The soil and plant determinants of community structures of the dominant actinobacteria in Marion Island terrestrial habitats, Sub-Antarctica, Polar Biol., 2012, vol. 35, pp. 1129–1141.

    Article  Google Scholar 

  22. Schade, J. and Weidenmaier, C., Cell wall glycopolymers of Firmicutes and their role as nonprotein adhesins, FEBS Lett., 2016, vol. 590, pp. 3758–3771.

    Article  CAS  Google Scholar 

  23. Schleifer, K.H. and Kandler, O., Peptidoglycan types of bacterial cell walls and their taxonomic implications, Bacteriol. Rev., 1972, vol. 36, pp. 407–477.

    Article  CAS  Google Scholar 

  24. Shashkov, A.S., Tul’skaya, E.M., Streshinskaya, G.M., Dmitrenok, A.S., Potekhina, N.V., Senchenkova, S.N., Piskunkova, N.F., Dorofeeva, L.V., and Evtushenko, L.I., Rhamnomannans and teichuronic acid from the cell wall of Rathayibacter tritici VKM Ac-1603T, Biochemistry (Moscow), 2020, vol. 85, pp. 369–377.

    CAS  PubMed  Google Scholar 

  25. Takeuchi, M. and Yokota A., Cell-wall polysaccharides in coryneform bacteria, J. Gen. Appl. Microbiol., 1989, vol. 35, pp. 233–252.

    Article  CAS  Google Scholar 

  26. Takeuchi, M. and Yokota A., Evaluation of cell-wall sugar composition as a taxonomic marker of some coryneform bacteria, J. Gen. Appl. Microbiol., 1993, vol. 39, pp. 505–512.

    Article  CAS  Google Scholar 

  27. Takeuchi, M., Yokota, A., and Misaki, A., Comparative structures of the cell-wall polysaccharides of four species of the genus Microbacterium, J. Gen. Appl. Microbiol., 1990, vol. 36, pp. 255–271.

    Article  CAS  Google Scholar 

  28. Tul’skaya, E.M., Shashkov, A.S., Streshinskaya, G.M., Senchenkova, S.N., Potekhina, N.V., Kozlova, Y.I., and Evtushenko, L.I., Teichuronic and teichulosonic acids of actinomycetes, Biochemistry (Moscow), 2011, vol. 76, pp. 736–744.

    PubMed  Google Scholar 

  29. van Sorge, N.M., Cole, J.N., Kuipers, K., Henningham, A., Aziz, R.K., Kasirer-Friede, A., Lin, L., Berends, E.T.M., Davies, M.R., Dougan, G., Zhang, F., Dahesh, S., Shaw, L., Gin, J., Cunningham, M., Merriman, J.A., et al., The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design, Cell Host Microbe, 2014, vol. 15, pp. 729–740.

    Article  CAS  Google Scholar 

  30. Wang, Q., Wang, R., He, L., and Sheng, X., Location-related differences in weathering behaviors and populations of culturable rock-weathering bacteria along a hillside of a rock mountain, Microb. Ecol., 2017, vol. 73, pp. 838–849.

    Article  Google Scholar 

  31. Wilhelm, R.C., Radtke, K.J., Mykytczuk, N.C., Greer, C.W., and Whyte, L.G., Life at the wedge: the activity and diversity of Arctic ice wedge microbial communities, Astrobiology, 2012, vol. 12, pp. 347–360.

    Article  CAS  Google Scholar 

  32. Yu, Y., Sheng, X., He, L., and Huang, Z., Linkage between culturable mineral-weathering bacteria and their weathering effectiveness along a soil profile, Geomicrobiol. J., 2016, vol. 33, pp. 10–19.                                                    

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Potekhina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Abbreviations: HSQC, proton-detected heteronuclear single quantum correlation; J, spin-spin interaction constant; ROESY, Rotating-frame nuclear Overhauser Effect correlation Spectroscopy; COSY, Correlated Spectroscopy; TOCSY, Total Correlation Spectroscopy; HMBC, Heteronuclear Multiple Bond Correlation; δС, δН, the values of chemical shifts of the 13C and 1H atoms, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaychikov, V.A., Potekhina, N.V., Dmitrenok, A.S. et al. Cell Wall Rhamnan in Actinobacteria of the Genus Curtobacterium . Microbiology 90, 343–348 (2021). https://doi.org/10.1134/S0026261721030139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721030139

Keywords:

Navigation