Skip to main content
Log in

The soil and plant determinants of community structures of the dominant actinobacteria in Marion Island terrestrial habitats, Sub-Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Marion Island is a Sub-Antarctic island made up of distinct ecological habitats based on soil physiochemical, plant cover and physical characteristics. The microbial diversity and ecological determinants in this harsh Sub-Antarctic environment are largely uncharacterized. Actinobacteria have diverse ecological functions related to soil and plant functioning. This study was aimed at characterizing the diversity and community structures of the dominant actinobacteria in the distinct habitats and to identify their determinant soil and plant characteristics. Using the 16S rRNA gene, the denaturing gradient gel electrophoresis patterns and clone library diversity were correlated with the soil and plant characteristics. Multivariate statistical methods were also used to identify determinant soil and plant characteristics. Salinity and pH were the most important soil determinants, and a number of important site-specific plant species may have been important. The Coastal Fellfield Habitat was dominated by sequences of the suborders Micrococcineae (44%) and Propionibacterineae (18%), with salinity identified as the principal determinant. The Cotula Herbfield Habitat was dominated by Frankineae (37%) and Streptosporangineae (38%), which were correlated with organic nutrient concentrations. The Wet Mire Habitat was dominated by Acidimicrobineae (61%), with moisture and organic carbon content as principal components. Culture-dependent studies were complementary to culture-independent studies with the majority of actinobacteria isolated not identified in 16S rRNA gene clone libraries. This study demonstrates how the soil physiochemical characteristics and plant species independently determine the community structures of the dominant actinobacteria in distinct ecological habitats. These factors subsequently influence their ecological adaptation, roles and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Babalola OB, Kirby BM, Le Roes-Hill M, Cook AE, Cary SC, Burton SG, Cowan DA (2008) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11:566–576

    Article  Google Scholar 

  • Bagatzevska N (2000–2002) Characteristics of soil actinomycetes from Antarctica. Cult Coll 3:3–14

    Google Scholar 

  • Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. Microbiol Meth 55:541–555

    Article  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microb Ecol 68:1–13

    Article  CAS  Google Scholar 

  • Bergsma-Vlami M, Prins ME, Raaijmakers JM (2005) Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. FEMS Microb Ecol 52:59–69

    Article  CAS  Google Scholar 

  • Berthelet M, White LG, Greer CW (1996) Rapid, direct extraction of DNA from soils for PCR analysis using polyvinylpolypyrrolidone spin columns. FEMS Microbiol Lett 138:17–22

    Article  PubMed  CAS  Google Scholar 

  • Bossio DA, Scow KM (1995) Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Appl Environ Microbiol 61:4043–4050

    PubMed  CAS  Google Scholar 

  • Brambilla E, Hippe H, Hagelstein A, Tindall BJ, Stackebrandt E (2001) 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5:23–33

    Article  PubMed  CAS  Google Scholar 

  • Button DK, Schut F, Quang P, Martin R, Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59:881–891

    PubMed  CAS  Google Scholar 

  • Chown SL, Froneman PW (2008) The Prince Edward Islands: land-sea interactions in a changing ecosystem. Sun Press, Paarl (South Africa)

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretations. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acid Res 37:D141–D145

    Article  PubMed  CAS  Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    Article  PubMed  CAS  Google Scholar 

  • Demoling F, Figueroa D, Bååth E (2007) Comparison of factors limiting bacterial growth in different soils. Soil Biol Biochem 39:2485–2495

    Article  CAS  Google Scholar 

  • Farrelly V, Rainey FA, Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61:2798–2801

    PubMed  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. PNAS 103:626–631

    Article  PubMed  CAS  Google Scholar 

  • Forney LJ, Zhou X, Brown CJ (2004) Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 7:210–220

    Article  PubMed  CAS  Google Scholar 

  • French DD, Smith VR (1986) Bacterial populations in soils of a Sub-Antarctic island. Pol Biol 6:75–82

    Article  Google Scholar 

  • Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643

    Article  PubMed  CAS  Google Scholar 

  • Frostegård A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    PubMed  Google Scholar 

  • Ganzert L, Lipski A, Hubberten H, Wagner D (2011) The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica. FEMS Microbiol Ecol 76:476–491

    Article  PubMed  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Ann Rev Phyto 42:243–270

    Article  CAS  Google Scholar 

  • Gavrish E, Bollmann A, Epstein S, Lewis K (2008) A trap for in situ cultivation of filamentous actinobacteria. Microbiol Meth 72:257–262

    Article  CAS  Google Scholar 

  • Germida JJ, Siciliano SD, De freitas JR, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizsphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. Ferm Technol 65:501–509

    Article  CAS  Google Scholar 

  • Hayakawa M, Otoguro M, Takeuchi T, Yamazaki T, Iimura Y (2000) Application of a method incorporating differential centrifugation for selective isolation of motile actinomycetes in soil and plant litter. Ant van Lee 78:171–185

    Article  CAS  Google Scholar 

  • Hill P, Krištůfek V, Dijkhuizen L, Boddy C, Kroetsch D, van Elsas JD (2011) Land use intensity controls actinobacterial community structure. Microb Ecol 61:286–302

    Article  PubMed  Google Scholar 

  • Hirsch CF, Christensen DL (1983) Novel method for selective isolation of actinomycetes. Appl Environ Microbiol 46:925–929

    PubMed  CAS  Google Scholar 

  • Hopkins DW, Macnaughton SJ, O’donnell AG (1991) A dispersion and differential technique for representatively sampling microorganisms from soil. Soil Biol Biochem 23:217–225

    Article  Google Scholar 

  • Jaspers E, Overmann J (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70:4831–4839

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Huang Q, Deng S, Dong H, Yu B (2010) Planktonic actinobacterial diversity along a salinity gradient of a river and five lakes on the Tibetan Plateau. Extremophiles 14:367–376

    Article  PubMed  Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivatable” microorganisms in pure culture in a simulated natutral environment. Science 296:1127–1128

    Article  PubMed  CAS  Google Scholar 

  • Keller M, Zengler K (2004) Tapping into microbial diversity. Nat Rev Microbiol 2:141–150

    Article  PubMed  CAS  Google Scholar 

  • Kochkina GA, Ivanushkina NE, Karasev SG, Gavrish EY, Gurina LV, Evtushenko LI, Spirina EV, Vorob’eva EA, Gilichinskii DA, Ozerskaya SM (2001) Survival of micromycetes and actinobacteria under conditions of long-term natural cryopreservation. Microbiology 70:356–364

    Article  CAS  Google Scholar 

  • Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Ant van Lee 81:509–520

    Article  Google Scholar 

  • Kowalchuk GA, Drigo B, Yergeau E, van Veen JA (2006) Assessing bacterial and fungal community structure in soil using ribosomal RNA and other structural gene markers. In: Nannipieri P, Smalla K (eds) Nucleic Acids and Proteins in Soil. Soil Biology, vol 8, pp 159–188

  • Legendre L, Legendre P (1983) Numerical ecology. Elsevier Scientific Publishing Company, New York

    Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. PNAS 104:11436–11440

    Article  PubMed  CAS  Google Scholar 

  • Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, Ward AC, Bull AT, Goodfellow M (2005) Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Syst Evol Microbiol 55:1759–1766

    Article  CAS  Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecol 40:43–56

    CAS  Google Scholar 

  • Moncheva P, Tishkov S, Dimitrova N, Chipeva V, Antonova-Nikolova S, Bagatzevska N (2000–2002) Characteristics of soil actinomycetes from Antarctica. Cult Collect 3:3–14

    Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Nakatsu CH (2007) Soil microbial community analysis using denaturing gradient gel electrophoresis. Am J Soil Sci Soc 71:562–571

    Article  CAS  Google Scholar 

  • Nonomura H, Ohara Y (1971) Distribution of actinomycetes in soil VIII. Green spore group of Microtetraspora, its preferential isolation and taxonomic characteristics. Ferm Technol 49:1–7

    Google Scholar 

  • Pankratov TA, Dedysh SN, Zavarzin AGA (2006) The leading role of actinobacteria in aerobic cellulose degradation in Sphagnum peat bogs. Doklady biological sciences: PNAS. USSR 410:428–430

    CAS  Google Scholar 

  • Piao Z, Yang L, Zhao L, Yin S (2008) Actinobacterial community structure in soils receiving long-term organic and inorganic amendments. Appl Environ Microbiol 74:526–530

    Article  PubMed  CAS  Google Scholar 

  • Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. PNAS 106:19964–19969

    PubMed  CAS  Google Scholar 

  • Reysenbach AL, Pace NR (1995) Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the polymerase chain reaction. In: Robb FT, Place AR (eds) Archaea: a laboratory manual—thermophiles. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold-Spring Habor Laboratory Press, New York

    Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Shivaji S, Reddy GS, Aduri RP, Kutty R, Ravenschlag K (2004) Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cellul Mol Biol 50:525–536

    CAS  Google Scholar 

  • Smith VR (1987) The environmental and biota of Marion Island. S Afr J Sci 83:211–220

    Google Scholar 

  • Smith VR (1988) Production and nutrient dynamics of plant communities on a Sub-Antarctic Island—5. Nutrient budget and turnover times for mire-grasslands, fjaeldmark and fernbrakes. Pol Biol 8:255–269

    Article  Google Scholar 

  • Smith VR, Ashton PJ (1981) Bryophyte-cyanobacteria associations on a Sub-Antarctic Marion Island, are they important in nitrogen fixation? South Afr J Antarc Res 10(11):24–26

    Google Scholar 

  • Smith VR, Steenkamp M (1992) Soil macrofauna and nitrogen on a Sub-Antarctic island. Oecologia 92:201–206

    Article  CAS  Google Scholar 

  • Smith VR, Steenkamp M (2001) Classification of the terrestrial habitats on Marion Island based on vegetation and soil chemistry. Veg Sci 12:181–198

    Article  Google Scholar 

  • Smith VR, Steenkamp M, French DD (1993) Soil decomposition potential in relation to environmental factors on Marion Island (Sub-Antarctic). Soil Biol Biochem 25:1619–1633

    Article  Google Scholar 

  • Smith VR, Steenkamp M, Gremmen NJM (2001) Terrestrial habitats on sub-Antarctic Marion Island: Their vegetation, edaphic attributes, distribution and response to climate change. S Afr J Bot 67:641–654

    Google Scholar 

  • Smith JJ, Ah Tow L, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421

    Article  PubMed  Google Scholar 

  • Stach JE, Maldonado LA, Ward AC, Goodfellow M, Bull AT (2003a) New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5:828–841

    Article  PubMed  CAS  Google Scholar 

  • Stach JEM, Maldonado LA, Masson DG, Ward AC, Goodfellow M, Bull AT (2003b) Statistical approaches for estimating actinobacterial diversity in marine sediments. Appl Environ Microbiol 69:6189–6200

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. PNAS 101:11030–11035

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. doi:10:1093/molbev/msm1092

  • Vorob’ev AV, Manucharova NA, Yaroslavtsev AM, Belova EV, Zvyagintsev DG, Sudnitsyn II (2007) The composition of the chitinolytic microbial complex and its effect on chitin decomposition at various humidity levels. Microbioogy 76:557–562

    Article  Google Scholar 

  • Waksman SA (1957) Species concept among the actinomycetes with special reference to the genus Streptomyces. Microbiol Mol Biol Rev 21:1–29

    CAS  Google Scholar 

  • Weisberg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. Bacteriology 173:697–703

    Google Scholar 

  • Yamamura H, Hayakawa M, Iimura Y (2003) Application of sucrose-gradient centrifugation for selective isolation of Nocardia spp. from soil. Appl Microbiol 95:677–685

    Article  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp 18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the National Research Foundation (NRF) of South Africa for funding this PhD work under the (SANAP) programme. We would also like to thank Maphefo Wendy Sekgota for helping with the isolation of actinobacteria and Marla Tuffin for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tendai Walter Sanyika.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4610 kb)

Supplementary material 2 (DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanyika, T.W., Stafford, W. & Cowan, D.A. The soil and plant determinants of community structures of the dominant actinobacteria in Marion Island terrestrial habitats, Sub-Antarctica. Polar Biol 35, 1129–1141 (2012). https://doi.org/10.1007/s00300-012-1160-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1160-0

Keywords

Navigation